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Abstract. We introduce a model of competing agents in a prophet set-
ting, where rewards arrive online, and decisions are made immediately
and irrevocably. The rewards are unknown from the outset, but they are
drawn from a known probability distribution. In the standard prophet
setting, a single agent makes selection decisions in an attempt to maxi-
mize her expected reward. The novelty of our model is the introduction
of a competition setting, where multiple agents compete over the arriving
rewards, and make online selection decisions simultaneously, as rewards
arrive. If a given reward is selected by more than a single agent, ties are
broken either randomly or by a fixed ranking of the agents. The consid-
eration of competition turns the prophet setting from an online decision
making scenario to a multi-agent game.

For both random and ranked tie-breaking rules, we present simple
threshold strategies for the agents that give them high guarantees, inde-
pendent of the strategies taken by others. In particular, for random tie-
breaking, every agent can guarantee herself at least 1

k+1
of the highest

reward, and at least 1
2k

of the optimal social welfare. For ranked tie-
breaking, the ith ranked agent can guarantee herself at least a half of
the ith highest reward. We complement these results by matching upper
bounds, even with respect to equilibrium profiles. For ranked tie-breaking
rule, we also show a correspondence between the equilibrium of the k-
agent game and the optimal strategy of a single decision maker who can
select up to k rewards.

Keywords: Prophet inequality · Multi-agent system ·
Threshold-strategy

1 Introduction

In the classical prophet inequality problem a decision maker observes a sequence
of n non-negative real-valued rewards v1, . . . , vn that are drawn from known
independent distributions F1, . . . , Fn. At time t, the decision maker observes
reward vt, and needs to make an immediate and irrevocable decision whether or
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not to accept it. If she accepts vt, the game terminates with value vt; otherwise,
the reward vt is gone forever and the game continues to the next round. The
goal of the decision maker is to maximize the expected value of the accepted
reward.

This family of problems captures many real-life scenarios, such as an employer
who interviews potential workers overtime, renters looking for a potential house,
a person looking for a potential partner for life, and so on. More recently, starting
with the work of Hajiaghayi et al. [5], the prophet inequality setting has been
studied within the AI community in the context of market and e-commerce sce-
narios, with applications to pricing schemes for social welfare and revenue max-
imization. For a survey on a market-based treatment of the prophet inequality
problem, see the survey by Lucier [13].

An algorithm ALG has a guarantee α if the expected value of ALG is at least
α, where the expectation is taken over the coin flips of the algorithm, and the
probability distribution of the input. Krengel and Sucheston [11,12] established
the existence of an algorithm that gives a tight guarantee of 1

2E[maxi vi]. Later,
it has been shown that this guarantee can also be obtained by a single-threshold
algorithm—an algorithm that specifies some threshold from the outset, and
accepts a reward if and only if it exceeds the threshold. Two such thresholds
have been presented by Samuel-Cahn [15], and Kleinberg and Weinberg [10].
Single-threshold algorithms are simple and easy to explain and implement.

Competing Agents. Most attention in the literature has been given to scenarios
with a single decision maker. Motivated by the economic aspects of the problem,
where competition among multiple agents is a crucial factor, we introduce a
multi-agent variant of the prophet model, in which multiple agents compete
over the rewards.

In our model, a sequence of n non-negative real-valued rewards v1, . . . , vn

arrive over time, and a set of k agents make immediate and irrevocable selection
decisions. The rewards are unknown from the outset, but every reward vt is
drawn independently from a known distribution Ft. Upon the arrival of reward
vt, its value is revealed to all agents, and every agent decides whether or not to
select it.

One issue that arises in this setting is how to resolve ties among agents. That
is, who gets the reward if more than one agent selects it. We consider two natural
tie-breaking rules; namely, random tie breaking (where ties are broken uniformly
at random) and ranked tie-breaking (where agents are a-priori ranked by some
global order, and ties are broken in favor of higher ranked agents). Random
tie-breaking fits scenarios with symmetric agents, whereas ranked tie-breaking
fits scenarios where some agents are preferred over others, according to some
global preference order. For example, it is reasonable to assume that a higher-
position/salary job is preferred over lower-position/salary job, or that firms in
some industry are globally ordered from most to least desired. Random and
ranked tie-breaking rules were considered in [8] and [9], respectively, in secretary
settings.

Unlike the classical prophet scenario, which studies the optimization problem
of a single decision maker, the setting of competing agents induces a game among
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multiple agents, were an agent’s best strategy depends on the strategies chosen
by others. Therefore, we study the equilibria of the induced games. In particular,
we study the structure and quality of equilibrium in these settings and devise
simple strategies that give agents high guarantees.

When the order of distributions is unknown in advance, calculating the opti-
mal strategy is computationally hard. This motivates the use of simple and
efficiently computed strategies that give good guarantees.

1.1 Main Results and Techniques

For both random and ranked tie-breaking rules, we present simple single-
threshold strategies for the agents that give them high guarantees. A single-
threshold strategy specifies some threshold T , and selects any reward that
exceeds T .

For j = 1, . . . , n, let yj be the jth highest reward.
Under the random tie-breaking rule, we show a series of thresholds that have

the following guarantee:

Theorem (Theorem 1). For every � = 1, . . . , n, let T � = 1
k+�

∑�
j=1 E[yj ]. Then,

for every agent, the single threshold strategy T � (i.e., select vt iff vt ≥ T �)
guarantees an expected utility of at least T �.

Two special cases of the last theorem are where � = 1 and � = k. The case of
� = 1 implies that every agent can guarantee herself (in expectation) at least 1

k+1
of the highest reward. The case of � = k implies that every agent can guarantee
herself (in expectation) at least 1

2k of the optimal social welfare (i.e., the sum of
the highest k rewards), which also implies that the social welfare in equilibrium
is at least a half of the optimal social welfare.

The above result is tight, as shown in Proposition 1.
Similarly, for the ranked tie-breaking rule, we show a series of thresholds that

have the following guarantee:

Theorem (Theorem 2). For every i ≤ n and � = 0, . . . , n − i, let T̂ �
i =

1
�+2

∑i+�
j=i E[yj ]. Then, for the i-ranked agent, the single threshold strategy T̂ �

i

(i.e., select vt iff vt ≥ T̂ �
i ) guarantees an expected utility of at least T̂ �

i .

This result implies that for every i, the i-ranked agent can guarantee herself
(in expectation) at least a half of the ith highest reward. In Proposition 2 we
show that the last result is also tight.

Finally, we show that under the ranked tie-breaking rule, the equilibrium
strategies of the (ordered) agents coincide with the decisions of a single decision
maker who may select up to k rewards in an online manner and wishes to maxi-
mize the sum of selected rewards. Thus, the fact that every agent is aware of her
position in the ranking allows them to coordinate around the socially optimal
outcome despite the supposed competition between them.
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Theorem (Corollary 4). Under the ranked tie-breaking rule, in every equilib-
rium of the k-agent game the expected social welfare is at least 1 − O( 1√

k
) of the

optimal welfare.

A similar phenomenon was observed in a related secretary setting, where
the equilibrium strategy profile of a game with several ranked agents, induces
an optimal strategy for a single decision maker who is allowed to choose sev-
eral rewards and wishes to maximize the probability that the highest reward is
selected [14].

1.2 Additional Related Literature

The prophet problem and variants thereof has attracted a vast amount of liter-
ature in the last decade. For comprehensive surveys, see, e.g., the survey by Hill
and Kertz [6] and the survey by Lucier [13] which gives an economic view of the
problem.

A related well-known problem in the optimal stopping theory is the secretary
problem, where the rewards are arbitrary but arrive in a random order. For the
secretary problem a tight 1/e-approximation has been established; for a survey,
see, e.g., [4].

Our work is inspired by a series of studies that consider scenarios where
multiple agents compete over the rewards in secretary-like settings, where every
agent aims to receive the highest reward. Karlin and Lei [9] and Immorlica et
al. [8] considered the ranked- and the random tie-breaking rules, respectively,
in secretary settings with competition. For the ranked tie-breaking rule, Karlin
and Lei [9] show that the equilibrium strategies take the form of time-threshold
strategies; namely, the agent waits until a specific time t, thereafter competes
over any reward that is the highest so far. The values of these time-thresholds
are given by a recursive formula. For the random tie-breaking rule, Immorlica
et al. [8] characterize the Nash equilibria of the game and show that for several
classes of strategies (such as threshold strategies and adaptive strategies), as the
number of competing agents grows, the timing in which the earliest reward is
chosen decreases. This confirms the argument that early offers in the job market
are the result of competition between employers.

Competition among agents in secretary settings has been also studied by Ezra
et al. [3], in a slightly different model. Specifically, in their setting, decisions need
not be made immediately; rather, any previous reward can be selected as long
as it is still available (i.e., has not been taken by a different agent). Thus, the
competition is inherent in the model.

Another related work is the dueling framework by Immorlica et al. [7]. One
of their scenarios considers a 2-agent secretary setting, where one agent aims
to maximize the probability of getting the highest reward (as in the classical
secretary problem), and the other agent aims to outperform her opponent. They
show an algorithm for the second agent that guarantees her a winning probability
of at least 0.51. They also establish an upper bound of 0.82 on this probability.
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Other competitive models have been considered in the optimal stopping the-
ory; see [1] for a survey.

The work of Kleinberg and Weinberg [10] regarding matroid prophet prob-
lems is also related to our work. They consider a setting where a single decision
maker makes online selections under a matroid feasibility constraint, and show
an algorithm that achieve 1/2-approximation to the expected optimum for arbi-
trary matroids. For the special case of uniform matroids, namely selecting up to
k rewards, earlier works of Alaei [2] and Hajiaghayi et al. [5] shows a approx-
imation of 1 − O( 1√

k
) for the optimal solution. As mentioned above, the same

guarantee is obtained in a setting with k ranked competing agents.

1.3 Structure of the Paper

In Sect. 2 we define our model. In Sects. 3 and 4 we present our results with
respect to the random tie-breaking rule, and the ranked tie-breaking rule, respec-
tively. We conclude the paper in Sect. 5 with future directions.

2 Model

We consider a prophet inequality variant, where a set of n rewards, v1, . . . , vn, are
revealed online. While the values v1, . . . , vn are unknown from the outset, vt is
drawn independently from a known probability distribution Ft, for t ∈ [n], where
[n] = {1, . . . , n}. In the classical prophet setting, a single decision maker observes
the realized reward vt at time t, and makes an immediate and irrevocable decision
whether to take it or not. If she takes it, the game ends. Otherwise, the reward
vt is lost forever, and the game continues with the next reward.

Unlike the classical prophet setting that involves a single decision maker, we
consider a setting with k decision makers (hereafter, agents) who compete over
the rewards. Upon the revelation of reward vt, every active agent (i.e., an agent
who has not received a reward yet) may select it. If a reward is selected by
exactly one agent, then it is assigned to that agent. If the reward vt is selected
by more than one agent, it is assigned to one of these agents either randomly
(hereafter, random tie-breaking), or according to a predefined ranking (hereafter,
ranked tie-breaking). Agents who received rewards are no longer active.

A strategy of agent i, denoted by Si, is a function that for every t = 1, . . . , n,
decides whether or not to select vt, based on t, the realization of vt, and the
set of active agents1. A strategy profile is denoted by S = (S1, . . . , Sk). We also
denote a strategy profile by S = (Si, S−i), where S−i denotes the strategy profile
of all agents except agent i.

Every strategy profile S induces a distribution over assignments of rewards to
agents. For ranked tie breaking, the distribution is with respect to the realizations

1 One can easily verify that in our setting, additional information, such as the history of
realizations of v1, . . . , vt−1, and the history of selections and assignments, is irrelevant
for future decision making.
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of the rewards, and possibly the randomness in the agent strategies. For random
tie breaking, the randomness is also with respect to the randomness in the tie-
breaking.

The utility of agent i under strategy profile S, ui(S), is her expected reward
under S; every agent acts to maximize her utility.

We say that a strategy Si guarantees agent i a utility of α if ui(Si, S−i) ≥ α
for every S−i.

Definition 1. A single threshold strategy T is the strategy that upon the arrival
of reward v, v is selected if and only if the agent is still active and vt ≥ T .

We also use the following equilibrium notions:

– Nash Equilibrium (NE): A strategy profile S = (S1, . . . , Sk) is a NE if for
every agent i and every strategy S′

i, it holds that ui(S′
i, S−i) ≤ ui(Si, S−i).

– Subgame perfect equilibrium (SPE): A strategy profile S = (S1, . . . , Sk) is an
SPE if S is a NE for every subgame of the game. I.e. for every initial history
h, S is a NE in the game induced by history h.

SPE is a refinement of NE; namely, every SPE is a NE, but not vice versa.
In the next sections, we let yj denote the random variable that equals the

jth maximal reward among {v1, . . . , vn}.

3 Random Tie-Breaking

In this section we consider the random tie-breaking rule.
We start by establishing a series of single threshold strategies that guarantee

high utilities.

Theorem 1. For every � = 1, . . . , n, let T � = 1
k+�

∑�
j=1 E[yj ]. Then, for every

agent, the single threshold strategy T � (i.e., select vt iff vt ≥ T �) guarantees an
expected utility of at least T �.

Proof. Fix an agent i. Let S−i be the strategies of all agents except agent i, and
let S = (T �, S−i). Let AS

i,j denote the event that agent i is assigned the reward
vj in strategy profile S. I.e., AS

i,j is the event that agent i competed over reward
vj and received it according to the random tie-breaking rule. For simplicity of
presentation, we omit S and write Ai,j . It holds that

ui(S) = E

⎡

⎣
n∑

j=1

vj · Pr (Ai,j)

⎤

⎦

= E

⎡

⎣
n∑

j=1

(T � + vj − T �) Pr
(
vj ≥ T �,∀r<jAi,r, Ai,j

)
⎤

⎦ .
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Let p =
∑n

j=1 Pr(vj ≥ T �,∀j′<jAi,j′ , Ai,j) (i.e., p is the probability that
agent i receives some reward in strategy profile S = (T �, S−i)), and let Z+ =
max{Z, 0}. We can now write ui(S) as follows:

ui(S) = pT � + E

⎡

⎣
n∑

j=1

(vj − T �)+ Pr
(∀r<jAi,r, Ai,j

)
⎤

⎦

= p · T � + E

[ n∑

j=1

(vj − T �)+ · Pr
(∀r<jAi,r

) · Pr
(
Ai,j | ∀r<jAi,r

)]

≥ p · T � + E

[ n∑

j=1

(vj − T �)+ · (1 − p) ·Pr
(
Ai,j | ∀r<jAi,r

)]

≥ p · T � +
1 − p

k
· E

⎡

⎣
n∑

j=1

(vj − T �)+

⎤

⎦ .

The first inequality holds since the probability of not getting any reward until
time j is bounded by 1 − p (i.e., the probability of not getting any reward). The
last inequality holds since if vj − T � ≥ 0 and agent i is still active, the reward
is selected, thus assigned with probability at least 1/k. Since each term in the
summation is non-negative, we get the following:

ui(S) ≥ p · T � +
1 − p

k
· E

⎡

⎣
�∑

j=1

(yj − T �)+

⎤

⎦

≥ p · T � +
1 − p

k
· E

⎡

⎣
�∑

j=1

yj − � · T �

⎤

⎦

= p · T � +
1 − p

k
· (

(k + �) · T � − � · T �
)

= T �,

where the last equality follows by the definition of T �. ��
The special cases of � = 1 and � = k give the following corollaries:

Corollary 1. The single-threshold strategy T k guarantees an expected utility of
at least 1

2kE[
∑k

i=1 yi].

Corollary 2. The single-threshold strategy T 1 guarantees an expected utility of
at least 1

k+1E[y1].

We now show that the bound in Theorem 1 is tight.

Proposition 1. For every ε > 0 there exists an instance such that in the
unique equilibrium of the game, no agent gets an expected utility of more than
1

k+�

∑�
j=1 E[yj ] + ε for any � ≤ n.
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Proof. Given an ε > 0, consider the following instance (depicted in Fig. 1):

vt = 1 for all t ≤ n − 1, and vn =

{
k+ε

ε w.p. ε

0 w.p. 1 − ε

One can easily verify that in the unique equilibrium S, all agents compete over
the last reward, for an expected utility of 1 + ε

k . It holds that for every agent i:

ui(S) = 1 +
ε

k
≤ 1 + ε =

E[
∑�

j=1 yj ]
k + �

+ ε.

This example also shows that there are instances in which the social welfare in
equilibrium is at most half the optimal welfare allocation. ��

1 1 1 ... 1
k+ w.p.

0 otherwise

n − 1

Fig. 1. An example where the expected reward is no more than 1
k+�

∑�
j=1 E[yj ] + ε

4 Ranked Tie-Breaking

In this section we consider the ranked tie-breaking rule, and present a series of
single threshold strategies with their guarantees. We then show an interesting
connection to the setting of a single agent that can choose up to k rewards. We
start by presenting the single threshold strategies.

Theorem 2. For every i ≤ n and � = 0, . . . , n− i, let T̂ �
i = 1

�+2

∑i+�
j=i E[yj ]. The

single threshold strategy T̂ �
i (i.e., select vt iff vt ≥ T̂ �

i ) guarantees an expected
utility of at least T̂ �

i for the i-ranked agent.

Proof. Fix an agent i. Let S−i be the strategies of all agents except agent i, and
let S = (T̂ �

i , S−i). Let AS
i,j denote the event that agent i is assigned the reward

vj in strategy profile S. I.e., AS
i,j is the event that agent i competed over reward

vj and received it according to the ranked tie-breaking rule. For simplicity of
presentation, we omit S and write Ai,j . We bound the utility of agent i under
strategy profile S.

ui(S) = E

⎡

⎣
n∑

j=1

vj · Pr (Ai,j)

⎤

⎦

= E

⎡

⎣
n∑

j=1

(T̂ �
i + vj − T̂ �

i ) Pr
(
vj ≥ T̂ �

i ,∀r<jAi,r, Ai,j

)
⎤

⎦ .
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Let p =
∑n

j=1 Pr(vj ≥ T̂ �
i ,∀r<jAi,r, Ai,j) (i.e., p is the probability that

agent i receives some reward in strategy profile S = (T̂ �
i , S−i)), and let Z+ =

max{Z, 0}. We can now write ui(S) as follows:

ui(S) = p · T̂ �
i + E

⎡

⎣
n∑

j=1

(vj − T̂ �
i )+ Pr

(∀r<jAi,r, Ai,j

)
⎤

⎦

≥ p · T̂ �
i + E

[ n∑

j=1

(vj − T̂ �
i )+ ·(1 − p) · Pr

(
Ai,j | ∀r<jAi,r

)]

≥ p · T̂ �
i + (1 − p) · E

⎡

⎣
n∑

j=i

(yj − T̂ �
i )+

⎤

⎦ (1)

≥ p · T̂ �
i + (1 − p) · E

⎡

⎣
i+�∑

j=i

(yj − T̂ �
i )

⎤

⎦

= p · T̂ �
i + (1 − p) ·

⎛

⎝E

⎡

⎣
i+�∑

j=i

yj

⎤

⎦ − (� + 1)T̂ �
i

⎞

⎠

= p · T̂ �
i + (1 − p) ·

(
(� + 2) · T̂ �

i − (� + 1) · T̂ �
i

)
= T̂ �

i .

Inequality (1) holds since the probability of not getting any reward until time
j is bounded by 1−p (i.e., the probability of not getting any reward). Inequality
(1) holds since there are at most i − 1 agents that are ranked higher than agent
i, therefore there are at most i−1 rewards that can be selected but not assigned
to agent i. Finally, the last equality holds by the definition of T̂ �

i . ��
The special case of Theorem 2 where � = 0 gives the following corollary.

Corollary 3. For every i, the threshold strategy T̂ 0
i guarantees an expected util-

ity of E[yi]
2 for the i-ranked agent.

We next show that the bound in Theorem 2 is tight.

Proposition 2. For every ε > 0 and every i ≤ n, there exists an instance such
that in the unique equilibrium of the game, the i-ranked agent gets an expected
utility of at most 1

�+2

∑i+�
j=i E[yj ] + ε for every � ≤ n − i.

Proof. Given some ε > 0 and i ≤ n, consider the following instance (depicted in
Fig. 2):

vt =

⎧
⎪⎨

⎪⎩

∞ for t < i

1 for i ≤ t < n
1+ε

ε w.p. ε, and 0 w.p. 1 − ε for t = n
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One can easily verify that in the unique equilibrium of the game, agents 1, . . . , i−
1 will be assigned rewards v1, . . . , vi−1, and agent i will be assigned the last
reward vn for an expected utility of 1 + ε. It holds that:

ui(S) = 1 + ε =
E[

∑i+�
j=i yj ]

2 + �
+ ε.

��
∞ ... ∞ 1 ... 1

−1 w.p.

0 otherwise

n − ii − 1

Fig. 2. An example where the expected reward for agent i is no more than
1

�+2

∑i+�
j=i E[yj ] + ε

We next show that for any instance, the set of rewards assigned to the k
competing agents in equilibrium coincides with the set of rewards that are chosen
by the optimal algorithm for a single decision maker who can choose up to k
rewards and wishes to maximize their sum. Kleinberg and Weinberg [10] show
that the only optimal strategy of such a decision maker, takes the form of nk
dynamic thresholds, {T i

t }i,t for all t ≤ n and i ≤ k, so that the agent accepts
reward vt if vt ≥ T i

t , where k − i is the number of rewards already chosen (i.e.,
i is the number of rewards left to choose)2. Moreover, they show that these
thresholds are monotone with respect to i.

With the characterization of the strategy of a single decision maker who can
choose up to k rewards, we can characterize the unique SPE for the k-agent
game3.

Theorem 3. Let {T i
t }i∈[k],t∈[n] be the optimal strategy of a single decision maker

who may choose up to k rewards and wishes to maximize their sum. The unique
SPE of the k-agent game is for agent i to accept vt iff vt ≥ T i′+1

t , where i′ ≤ i
is the rank of agent i among the active agents. This SPE is unique up to cases
where vt = T i′

t .

Proof. Let Si denote the optimal strategy of the single agent who may choose
up to i rewards, as described above. Let Si be the strategy of agent i as described
in the assertion of the theorem. We prove by induction that for every i ∈ [k], the
rewards that are chosen by agents 1, . . . , i correspond to the rewards chosen by
a single decision maker, who may choose up to i rewards, and uses strategy Si.
For the case of i = 1, the claim holds trivially. Assume the claim holds for any

2 The uniqueness holds for distributions with no mass points. For distributions with
mass points, whenever vt = T i

t , the decision maker is indifferent between selecting
and passing.

3 The SPE is unique up to cases where T i
j = vt; in these cases the agent is indifferent.
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number of agents smaller than i. Since agent i has no influence on the rewards
received by agents 1, . . . , i−1, we may assume that agents 1, . . . , i−1 are playing
according to strategies S1, . . . , Si−1.

For every i ∈ [k], the total utility of agents 1, . . . , i is bounded by the utility
of the single decision maker u(Si), since the single decision maker can simulate a
game with i competing agents. Hence, by the induction hypothesis, agent i can
obtain a utility of at most u(Si) − u(Si−1). By playing according to Si, we are
guaranteed that whenever at least j agents are still active, any reward vt such
that vt ≥ T j

t will be taken by one of the agents. Thus, when every agent i is
playing according to Si, players 1, . . . , i play according to Si. Consequently, their
total utility is u(Si), and the utility of agent i is then maximal. The uniqueness
(up to the cases where vj = T i′

j ) is by the uniqueness of the optimal strategy of
the single decision maker. ��

We note that by Theorem 2 it holds that in the unique SPE described in
Theorem 3, every agent i receives at least maxn−i

�=0
1

�+2

∑i+�
j=i E[yj ].

Using the results of Alaei [2] regarding a single decision maker choosing k
rewards, we deduce an approximation of the social welfare in equilibrium:

Corollary 4. In SPE of the k agent prophet game, the expected social welfare
is at least 1 − O( 1√

k
) of the optimal welfare.

5 Discussion and Future Directions

In this work, we study the effect of competition in prophet settings. We show
that under both random and ranked tie-breaking rules, agents have simple strate-
gies that grant them high guarantees, ones that are tight even with respect to
equilibrium profiles under some distributions.

Under the ranked tie-breaking rule, we show an interesting correspondence
between the equilibrium strategies of the k competing agents and the optimal
strategy of a single decision maker that can select up to k rewards. It would be
interesting to study whether this phenomenon applies more generally, and what
are the conditions under which it holds.

Below we list some future directions that we find particularly natural.

– Study competition in additional problems related to optimal stopping theory,
such as Pandora’s box [16].

– Study competition in prophet (and secretary) settings under additional tie-
breaking rules, such as random tie breaking with non-uniform distribution,
and tie-breaking rules that allow to split rewards among agents.

– Study competition in scenarios where agents can choose multiple rewards,
under some feasibility constraints (such as matroid or downward-closed fea-
sibility constraints).

– Consider prophet settings with the objective of outperforming the other
agents, as in [7], or different agents’ objectives.

– Consider competition settings with non-immediate decision making, as in [3].
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