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Abstract

We study fair allocation of indivisible goods among additive
agents with feasibility constraints. In these settings, every
agent is restricted to get a bundle among a specified set of
feasible bundles. Such scenarios have been of great interest
to the AI community due to their applicability to real-world
problems. Following some impossibility results, we restrict
attention to matroid feasibility constraints that capture natural
scenarios, such as the allocation of shifts to medical doctors,
and the allocation of conference papers to referees.
We focus on the common fairness notion of envy-freeness up
to one good (EF1). Previous algorithms for finding EF1 allo-
cations are either restricted to agents with identical feasibility
constraints, or allow free disposal of items. An open problem
is the existence of EF1 complete allocations among heteroge-
neous agents, where the heterogeneity is both in the agents’
feasibility constraints and in their valuations. In this work, we
make progress on this problem by providing positive and neg-
ative results for different matroid and valuation types. Among
other results, we devise poly-time algorithms for finding EF1
allocations in the following settings: (i) n agents with het-
erogeneous partition matroids and heterogeneous binary val-
uations, (ii) 2 agents with heterogeneous partition matroids
and heterogeneous valuations, and (iii) at most 3 agents with
heterogeneous binary valuations and identical base-orderable
matroids.

1 Introduction
Many real-life problems involve the fair allocation of indi-
visible items among agents with different preferences, and
with constraints on the bundle that each agent may receive.
Examples include the allocation of course seats among stu-
dents (Budish et al. 2017) and the allocation of conference
papers among referees (Garg et al. 2010).

In general, different agents may have different constraints.
For example, consider the allocation of employees among
departments of a company: one department has room for
four project managers and two backend engineers, while an-
other department may have room for three backend engi-
neers and five data scientists. Another example can be found
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in the way shifts are assigned among medical doctors, where
every doctor has her own schedule limitations.

Our goal is to devise algorithms that find fair allocations
of indivisible items among agents with different preferences
and different feasibility constraints. Let us first explain what
we mean by “constraints” and what we mean by “fair”.

We focus on constraints that are represented by matroids
(see Section 2.1), mainly partition matroids. In a partition
matroid, the set of items is partitioned into a set of cate-
gories, and every category is associated with a cap on the
number of items from that category that can be allocated to
each agent.

A classic notion of fairness is envy freeness (EF), which
means that every agent (weakly) prefers his or her bundle to
that of any other agent. Since an EF allocation may not exist
when items are indivisible, recent studies focus on its relax-
ation known as EF1 — envy free up to one item (Budish
2011) — which means that every agent i (weakly) prefers
her bundle to any other agent j’s bundle, up to the removal
of the best good (in i’s eyes) from agent j’s bundle (see Sec-
tion 2.2).

Without feasibility constraints, an EF1 allocation always
exists and can be computed efficiently (Lipton et al. 2004).
However, this result does not consider feasibility constraints.
There are two ways to address such constraints.

The first approach is to directly construct allocations that
satisfy the constraints, i.e., guarantee that each agent re-
ceives a feasible bundle. This approach was taken recently
by Biswas and Barman (2018, 2019), who study settings
with additive valuations, where every agent values each bun-
dle at the sum of the values of its items. They present effi-
cient algorithms for computing EF1 allocations when agents
have: (i) identical matroid constraints and identical valua-
tions; or (ii) identical partition matroid constraints, even un-
der heterogeneous valuations (see Section 2.3). However,
their algorithms do not handle different partition constraints,
or identical matroid constraints with different valuations.

A second approach is to capture the constraints within the
valuation function. That is, the value of an agent for a bundle
equals the value of the best feasible subset of that bundle.
This approach seamlessly addresses heterogeneity in both
constraints and valuations. The valuation functions con-
structed this way are no longer additive, but are submodular
(Oxley 2006). Recently, Babaioff, Ezra, and Feige (2020)
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and Benabbou et al. (2020) have independently proved the
existence of EF1 allocations in the special case in which
agents have submodular valuations with binary marginals
(where adding an item to a bundle adds either 0 or 1 to its
value). Such an allocation can be converted to a fair and fea-
sible allocation by giving each agent the best feasible subset
of his/her allocated bundle, and disposing of the other items.

However, in some settings, such disposal of items may be
impossible. For example, when allocating shifts to medical
doctors, if an allocation rule returns an infeasible allocation
and shifts are disposed to make it feasible, the emergency-
room might remain understaffed. A similar problem may
occur when allocating papers to referees, where disposals
may leave some papers without reviews. The allocation rules
developed in the above papers may not yield EF1 alloca-
tions when they are constrained to return feasible alloca-
tions. Thus, an open problem remains:

Open problem: Given agents with different additive valua-
tions and different matroid constraints, which settings admit
a complete and feasible EF1 allocation?

1.1 Contribution and Techniques

Feasible envy. Before presenting our results, we shall dis-
cuss the EF1 notion in settings with heterogeneous con-
straints. Consider a setting with two agents, Alice and Bob,
and 8 identical items of a single category, with capacities 3
and 5 for Alice and Bob, respectively. Every complete feasi-
ble allocation gives 3 items to Alice and 5 to Bob. Ignoring
feasibility constraints, such an allocation is not EF1, since
even after removing a single item from Bob’s bundle, Alice
values it at 4, which is greater than her value for her own
bundle. However, a bundle of 4 items is infeasible for Alice.
Therefore, a more reasonable definition of envy in this set-
ting is feasible envy, where each agent compares her bundle
to the best feasible subset of any other agent’s bundle (see
Section 2.2 for formal definition). In the example above, the
best feasible subset of Bob’s bundle for Alice is worth 3.
Thus, the allocation is feasibly-envy-free (F-EF).

If Alice values one of Bob’s items at 2, then the above al-
location is not F-EF, since the best feasible subset of Bob’s
bundle for Alice is worth 4, but it is F-EF1, as it becomes
F-EF after removing this item from Bob’s bundle. Through-
out the paper, we use the notion of F-EF1 under hetero-
geneous constraints. Note that F-EF1 is equivalent to EF1
when agents have identical constraints.

Impossibilities. Below, we present several impossibility re-
sults that direct us to the interesting domain of study.

First, if the partition of items into categories is different
for different agents, an F-EF1 allocation may not exist, even
for two agents with identical valuations.

Second, going beyond matroid constraints to graph-
matching constraints (an intersection of two matroids) is
futile: even with two agents with identical valuations and
identical matching constraints, an F-EF1 allocation may not
exist.

Third, going beyond EF1 to the stronger notion of envy-
free up to any good (EFX) is futile: even with two agents

with identical valuations and identical uniform matroid con-
straints, an EFX allocation may not exist.

Based on these results, we focus on finding F-EF1 alloca-
tions when the agents’ constraints are represented by either:
(1) partition matroids where all agents share the same parti-
tion of items into categories but may have different capaci-
ties; or (2) base-orderable (BO) matroids — a wide class of
matroids containing partition matroids — where all agents
have identical matroid constraints but possibly different val-
uations.
Algorithms (see Table 1). For partition matroids, the rea-
son that the algorithms of Lipton et al. (2004) and Biswas
and Barman (2018) fail for agents with different capacities is
that they rely on cycle removal in the envy graph. Informally
(see Section 2.3 for details), these algorithms maintain a di-
rected envy graph in which each agent points to every agent
she envies. The algorithm prioritizes the agents who are not
envied, since giving an item to such agents keeps the allo-
cation EF1. If there are no unenvied agents, the envy graph
must contain a cycle, which is then removed by exchang-
ing bundles along the cycle. However, when different agents
in the cycle have different constraints, this exchange may
not be feasible. Thus, our main challenge is to develop tech-
niques that guarantee that no envy-cycles are created in the
first place. We manage to do so in four settings of interest:

1. There are at most two categories (see Section 3).
2. All agents have identical valuations (see Section 3).
3. All agents have binary valuations (see Section 4).
4. There are 2 agents (see Section 5).
Each setting is addressed by a different algorithm and using
a different cycle-prevention technique.

Beyond partition matroids, we consider the much wider
class of matroids, termed base-orderable (BO) matroids
(see definition 6.1). This class contains partition matroids,
laminar matroids (an extension of partition matroids where
the items in each category can be partitioned into sub-
categories), transversal matroids, and other interesting ma-
troid structures. In fact, it is conjectured by Bonin and Savit-
sky (2016) that “almost all matroids are BO”. For this class
we present algorithms for agents with identical constraints
and different additive valuations in the following cases:

5. There are 2 agents (see full version).
6. There are 3 agents with binary valuations (see Section6).
All of our algorithms run in polynomial-time.

1.2 Related Work
Capacity constraints are common in matching markets
such as doctors–hospitals and workers–firms: see Klaus,
Manlove, and Rossi (2016) for a recent survey. In these
settings, the preferences are usually represented by ordinal
rankings rather than by utility functions, and the common
design goals are Pareto efficiency, stability and strategy-
proofness rather than fairness.

Fair allocation with capacity constraints is particularly
relevant to the problem of assigning conference papers to
referees. Garg et al. (2010); Long et al. (2013); Lian et al.
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Matroid
Type

Complete
allocation

Het.
constraints

Het.
valuations

Valuations
# of

Agents Remarks Reference

Pa
rt

iti
on

X - X General n Biswas and Barman (2018)
X X - General n Section 3
X X X General 2 Section 5
X X X General n ≤ 2 categories Section 3
X X X Binary n PE for binary caps Section 4 / Full Ver.

B
ey

on
d

Pa
rt

iti
on X - - General n Laminar Biswas and Barman (2018)

- X X Binary n General
PE Babaioff, Ezra, and Feige (2020)

Benabbou et al. (2020) ***

X - X Binary 3 PE
BO Section 6

X - X General 2 BO Section 6

Table 1: A summary of the results. All results are for additive valuations. PE = Pareto-efficient. BO = base-orderable (Sec. 6).
The line marked by *** is not mentioned explicitly, but follows directly from their results (Sec. 1).

(2018) all study a setting in which there is both an upper
and a lower capacity on the total number of items for each
agent (reviewer). The constraints may be different for each
agent, but there is only one category of items. Note that
lower capacities are not matroid constraints, since they are
not downwards-closed. The same is true in the setting stud-
ied by Ferraioli, Gourvès, and Monnot (2014), where each
agent must receive exactly k items.

Fair allocation of items of different categories has been
studied by Mackin and Xia (2016) and Sikdar, Adali, and
Xia (2017). There are k categories, each of which has n
items, and each agent must receive exactly one item of
each category. Sikdar, Adalı, and Xia (2019) consider an
exchange market where each agent holds multiple items of
each category and should receive a bundle with exactly the
same number of items of each category. Nyman, Su, and Zer-
bib (2020) study a similar setting, but with monetary trans-
fers.

Barrera et al. (2015), Bilò et al. (2018), and Suksompong
(2019) study another kind of constraint in fair allocation.
The goods are arranged on a line, and each agent must re-
ceive a connected subset of the line, as when each item is
a house, and each agent should get a connected part of the
street. Bouveret et al. (2017) ant Bei et al. (2019) study a
more general setting in which the goods are arranged on a
general graph, and each agent must receive a connected sub-
graph. Note that these are not matroid constraints.

Gourvès, Monnot, and Tlilane (2013) study a setting with
a single matroid, where the goal includes building a base
of the matroid and providing worst case guarantees on the
agents’ utilities. Gourvès, Monnot, and Tlilane (2014) and
Gourvès and Monnot (2019) require the union of bundles
allocated to all agents to be an independent set of the ma-
troid. This inherently requires to leave some items unallo-
cated, which we do not allow here.

Fair allocation with binary additive valuations (without
constraints) has been studied recently, due to its practical
applications (Aleksandrov et al. 2015). With binary valu-
ations, better fairness guarantees (Bouveret and Lemaı̂tre
2016; Barman et al. 2018; Amanatidis et al. 2020) and bet-

ter strategic properties (Halpern et al. 2020) can be attained.
While, in general, the MNW solution is NP-hard, with bi-
nary valuations it can be computed efficiently (Darmann and
Schauer 2015; Barman, Krishnamurthy, and Vaish 2018).

2 Model and Preliminaries
2.1 Allocations and Constraints
We consider settings where a setM ofm items should be al-
located among a set N of n agents. An allocation is denoted
by X = (X1, . . . , Xn), where Xi ⊆ M is the bundle given
to agent i, and Xi ∩Xj = ∅ for all i 6= j ∈ N . An alloca-
tion is complete if

⊎
i∈N Xi = M . Throughout, we use [n]

to denote the set {1, . . . , n}.
We consider constrained settings, where every agent i is

associated with a matroidMi = (M, Ii) that specifies the
feasible bundles for agent i.

Definition 2.1. Given the set of items M , and a nonempty
set of independent sets I ⊆ 2M , the pair M = (M, I)
is a matroid if it satisfies the following properties: (i)
Downward-closed: for every S, S′ ⊆ S, if S ∈ I, then
S′ ∈ I; and (ii) For every S, T ∈ I, if |S| > |T |, then
there exists g ∈ S \ T such that T ∪ {g} ∈ I. A base of a
matroidM is a maximal cardinality independent set inM.

A special case of a matroid is a partition matroid:

Definition 2.2. (partition matroid) A matroid Mi =
(M, Ii) is a partition matroid if: (i) The set of items M is
partitioned into a set of categories Ci = {C1

i , . . . , C
`i
i } for

some `i ≤ m, (ii) Categories are associated with capacities
k1i , . . . , k

`i
i , and (iii) The collection of independent sets is

Ii = {S ⊆M : |S ∩ Ch
i | ≤ khi for every h ∈ [`i]}.

Given an allocation X, we denote by Xh
i the items from

category Ch
i given to agent i in X. A special case of a par-

tition matroid is a uniform matroid, which is a partition ma-
troid with a single category.

Definition 2.3. (feasible allocation) An allocation X is said
to be feasible if: (i) it is individually feasible: Xi ∈ Ii for
every agent i, and (ii) it is complete:

⊎
iXi = M .
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Let F denote the set of all feasible allocations. Through-
out this paper we consider only instances that admit a feasi-
ble allocation:

Assumption 2.4. All instances considered in this paper ad-
mit a feasible allocation; i.e., F 6= ∅. For partition ma-
troids, feasibility means that for every category Ch, the sum
of agent capacities for this category is at least |Ch|.

An instance is said to have identical matroids if all agents
have the same matroid feasibility constraints. I.e., Ii = Ij
for all i, j ∈ N . An instance with partition matroids is said
to have identical categories if all the agents have the same
partition into categories. I.e., `i = `j = ` for every i, j ∈
N , and Ch

i = Ch
j = Ch for every h ∈ `. The capacities,

however, may be different.

2.2 Valuations and Fairness Notions
Every agent i is associated with an additive valuation func-
tion vi : 2M → R+, which assigns a positive real value
to every set S ⊆ M . Additivity means that there exist m
values vi(1), . . . , vi(m) such that vi(S) =

∑
j∈S vi(j). An

additive valuation vi is called binary if vi(j) ∈ {0, 1} for
every i ∈ N, j ∈ M . An allocation X is Social Welfare
Maximazing (SWM) if X = argmaxX′∈F

∑
i∈[n] vi(X

′
i).

Definition 2.5 (envy and envy freeness). Given an allocation
X, agent i envies agent j iff vi(Xi) < vi(Xj). X is envy
free iff no agent envies another agent.

Definition 2.6 (EF1). (Budish 2011) An allocation X is
envy free up to one good (EF1) iff for every i, j ∈ N ,
there exists a subset Y ⊆ Xj with |Y | ≤ 1, such that
vi(Xi) ≥ vi(Xj \ Y ).

Definition 2.7. The best feasible subset of a set S for agent i
is BESTi(S) := argmaxT⊆S, T∈Ii vi(T ). While BESTi(S)
is not necessarily unique, we abuse notation and use
BESTi(S) as an arbitrary set in argmaxT⊆S, T∈Ii vi(T ).

Definition 2.8 (feasible valuation). The feasible valuation
of agent i for a set S is v̂i(S) := vi(BESTi(S)).

Definition 2.9. Given a feasible allocation X:

• Agent i F-envies agent j iff v̂i(Xi) < v̂i(Xj).
• X is F-EF (feasible-EF) if no agent F-envies another one.
• X is F-EF1 iff for every i, j ∈ N : there exists a subset
Y ⊆ Xj with |Y | ≤ 1, such that v̂i(Xi) ≥ v̂i(Xj \ Y ).

For further discussion of the F-EF1 criterion, and an al-
ternative (weaker) definition, see the full version.

Another usfull notation is positive feasible envy, which is
the amount by which an agent F-envies another agent:

Definition 2.10. The positive feasible envy of agent i to-
wards j in allocation X is:
Envy+X(i, j) := max(v̂i(Xj)− v̂i(Xi), 0).

Definition 2.11. The envy graph of an allocation X, G(X),
is a directed graph where the nodes represent the agents, and
there is an edge from agent i to agent j iff vi(Xi) < vi(Xj).
We use the term feasible envy graph to indicate an envy
graph created by the feasible-envy instead of plain envy.

2.3 Common Tools and Techniques
Below we review the most common methods for finding an
EF1 allocation.

Envy cycle elimination The first method for attaining an
EF1 allocation (in unconstrained setting, even with arbitrary
valuations) is due to Lipton et al. (2004).

The envy cycles elimination algorithm works as follows:
it starts with the empty allocation. Then, as long as there is
an unallocated item: (i) choose an agent that is a source in
the envy graph (i.e., no agent envies her), and give her an
arbitrary unallocated item, (ii) reconstruct the envy graph G
corresponding to the new allocation, (iii) as long as G con-
tains cycles, choose an arbitrary cycle, and shift the bundles
along the cycle. This increases the total value, thus this pro-
cess must end with a cycle-free graph.

Max Nash welfare The Nash social welfare (NW) of an
allocation X is the geometric mean of the agents’ values:
NW = (

∏
i∈[n] vi(Xi))

1
n . An allocation is max Nash wel-

fare (MNW) if it maximizes the NW among all feasible al-
locations. Caragiannis et al. (2019) showed that in uncon-
strained settings with additive valuations, every MNW allo-
cation is EF1.

Round robin (RR) RR works as follows: given a fixed order
σ over the agents, as long as there is an unallocated item, the
next agent according to σ (where the next agent of agent n
is agent 1) chooses an item she values most among the un-
allocated items. Simple as it might be, this algorithm results
in an EF1 allocation in unconstrained settings with additive
valuations (Caragiannis et al. 2019)

Per category RR + envy cycle elimination This algorithm
was introduced by Biswas and Barman (2018) for finding
an EF1 allocation in settings with homogeneous partition
constraints. It resolves the categories sequentially, resolving
each one by RR followed by envy cycle elimination, where
the order over the agents is determined by a topological or-
der in the obtained envy graph.

3 Warmup: Uniform Matroids
As a warm-up, we present a simple algorithm termed
Capped Round Robin (CRR). CRR is a slight modification
of round robin, where if an agent reached her capacity — she
is being skipped over; CRR finds a F-EF1 allocation when-
ever the constraints of all agents are uniform matroids, i.e.,
all items belong to a single category (but agents may have
different capacities and different valuations).

While CRR may not find an F-EF1 allocation for more
than one category, we can extend it to two categories by run-
ning CRR with reverse order on the second category.

Theorem 3.1. When all agents have partition-matroid con-
straints with at most two categories, the same categories but
possibly different capacities, an F-EF1 allocation always
exists and can be found efficiently.

Using CRR as a subroutine, we show that a similar algo-
rithm to the one used by Biswas and Barman (2018) finds an
F-EF1 allocation in settings with partition matroids with dif-
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ferent capacities and identical valuations; this follows from
the fact that no cycles can be formed in the envy graph.

Theorem 3.2. When all agents have partition-matroid con-
straints with the same categories but possibly different ca-
pacities, and identical additive valuations, an F-EF1 allo-
cation always exists and can be found efficiently.

4 Partition Matroids with Binary Valuations
In this section we present an algorithm that finds an F-
EF1 allocation in settings with n agents with different bi-
nary valuations, and partition matroids with different ca-
pacity constraints. For binary valuations vi(j) ∈ {0, 1} for
all i, j, and for every agent i we refer to the set of items
J = {j ∈M s.t vi(j) = 1} as agent i’s desired set.

Theorem 4.1. In every setting with partition matroids with
binary valuations (possibly heterogeneous capacities and
heterogeneous valuations), an F-EF1 allocation exists and
can be computed efficiently by the Iterated Priority Match-
ing Algorithm (described below).

A key tool we use is priority matching, defined next.
Priority matching. Given a graph G = (V,E), a matching
inG is a subset of edges µ ⊆ E such that each vertex u ∈ V
is adjacent to at most one edge in µ. Given an ordering on the
vertices, σ[1], . . . , σ[n], every matching is associated with a
binary vector of size n, where element i equals 1 whenever
vertex σ[i] is matched. The priority matching is the match-
ing associated with the maximum vector in the lexicographic
order. Note that every ordering over the vertices potentially
yields a different priority-matching.

Priority matching was introduced by Roth, Sönmez, and
Ünver (2005) in the context of kidney exchange, where
they prove that every priority matching is also a maximum-
cardinality matching; that is, it maximizes the total number
of saturated vertices in V .1

We next describe the algorithm.
Algorithm Iterated Priority Matching. (for pseudo code
see full version.) The algorithm works category-by-category.
For each category h, the items of Ch are allocated in two
phases, namely the matching phase and the leftover phase.
The matching phase proceeds in several iterations, where in
each iteration, every agent receives at most one item. The
number of iterations is at most the maximum capacity of an
agent in Ch, denoted by Th := maxi∈N khi . In each itera-
tion t of the matching phase, we construct a bipartite graph
Gh

t , where one side consists of the agents with remaining
capacity (i.e., agents such that |Xh

i | < khi ), and one side
consists of the unallocated items of Ch. An edge (i, j) ex-
ists in Gh

t iff j is a desired item of i (i.e., vi(j) = 1). Given
the current allocation, let σ be a topological order over the
agents in the feasible envy graph (we shall soon show that
the feasible envy-graph is cycle free). We compute a priority
matching inGh

t with respect to σ, and augment agent alloca-
tions by the obtained priority matching. We then update the

1Okumura (2014) extends this result to priority classes of arbi-
trary sizes, and shows a poly-time algorithm for finding a priority
matching. Simpler algorithms were presented by Turner (2015b,a).

feasible envy graph and proceed to the next iteration, where
the next set of items in Ch is allocated.

After at most Th iterations, all remaining items of cate-
gory Ch contribute value 0 to all agents with remaining ca-
pacity, and we move to the leftover phase. In this phase, we
allocate the leftover items arbitrarily among agents, respect-
ing feasibility constraints. This is possible since a feasible
allocation exists by assumption.

To prove the correctness of the algorithm, it suffices to
prove that every feasible envy-graph constructed in the pro-
cess is cycle-free, and that the feasible envy between any
two agents is at most 1. We prove both conditions simulta-
neously in the following theorem.

Lemma 4.2. In every iteration of the algorithm:
(a) The feasible envy-graph has no cycles;
(b) For every i, j ∈ N , Envy+X(i, j) ≤ 1.

Proof. The proof is by induction on the categories and it-
erations (details below). Both claims clearly hold from the
outset (i.e., under the empty allocation). In our analysis we
refer to states before and after (h, t) to denote the states be-
fore and after iteration t of category h, respectively.

We start by proving property (a): Assume that property
(a) holds before (h, 1) (i.e., before starting to allocate items
in category h). We prove that it holds after (h, t) for every
t. Suppose by contradiction that after (h, t) there is a cycle
i1 → · · · → ip = i1 in the feasible envy-graph. By assump-
tion (a) the cycle did not exist before category h, so at least
one edge was created during the first t steps in category h.
Suppose w.l.o.g. that it is the edge i1 → i2.

Let Q1 be the set of items desired by i1 that are allocated
to i1 up to iteration t of category h, and let q = |Q1|. It must
hold that i1 got these q items in the first q iterations of h
(otherwise, there exists an iteration ≤ q in which i1 did not
get an item, but a desired item remained unallocated, con-
tradicting maximum priority matching). Let Q2 be the set of
items desired by i1 that are allocated to i2 up to iteration t
of category h. The fact that i1 started to envy i2 during cat-
egory h implies that |Q2| ≥ q + 1 and khi1 ≥ q + 1. It must
hold that i2 got these q + 1 items in the first q + 1 iterations
of h (otherwise, one of these items could be allocated to i1
in iteration q + 1, contradicting maximum priority match-
ing). This also implies that iteration q + 1 is still within the
matching phase, since there is an item desired by i1, and i1
has remaining capacity. Therefore, i2 received at least q + 1
items within the matching phase, implying that i2’s value
increased by at least q + 1 up to iteration t of category h.

Let Q3 be the set of items desired by i2 that are allocated
to i3 up to iteration t of category h. i2 envies i3 after (h, t),
and before (h, 1) Envy+X(i2, i3) ≤ 1. Since i2’s value in-
creased by at least q + 1 up to iteration t of category h, it
must hold that |Q3| ≥ q + 1. We now claim that before
(h, q + 1), at most one item of Q3 was available, and i3 got
it in this iteration. Otherwise, one could allocate one of those
items to i2, and allocate the item that i2 received in iteration
q + 1 (that is desired by i1), to i1, increasing the priority
matching.

We conclude that i3 got an item at each one of the first
q + 1 iterations of category h, as |Q3| ≥ q + 1. Since all of
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these iterations are within the matching phase, all of these
items are desired by i3. Therefore, i3’s value increases by at
least q+ 1. Repeating this argument, we conclude that every
agent along the cycle received at least q + 1 desired items
during the first t steps of h, including agent ip = i1; but this
is in contradiction to the fact that i1 received q = |Q1| items.

We next prove property (b): We assume that property
(b) holds for every iteration before (h, t) and prove that it
holds after (h, t). Suppose by contradiction that after (h, t)
Envy+X(i, i′) > 1 for some agents i, i′. From the induction
assumption, before (h, t), Envy+X(i, i′) ≤ 1, and since at
most one item can be allocated to i′ in iteration t, we con-
clude that before (h, t), Envy+X(i, i′) = 1. Therefore, i pre-
cedes i′ in the topological order σ in iteration t. Since the
envy of i towards i′ increased, the algorithm must have allo-
cated to i′ some item j ∈ Ch desired by i in iteration t.

We distinguish between two cases. Case (1): The capacity
of agent iwas not exhausted before (h, t). Then, the priority-
matching on Gh

t would prefer the matching in which j is
given to i over the one where j is given to i′; a contradic-
tion. Case (2): The capacity of agent i was exhausted before
(h, t). Then, since j is an available item that i desires, it must
be that the capacity of i was exhausted during the matching
phase. This implies that i desires all the items she receives
in category Ch. That is, if X is the allocation after (h, t),
vi(X

h
i ) = khi ≥ v̂i(X

h
i′). By the contradiction assumption,

after (h, t),Envy+X(i, i′) > 1; that is, vi(Xi) ≤ v̂i(Xi′)−2.
Let X′ be the allocation before (h, 1). By additivity and the
above inequalities, we get that vi(X ′i) = vi(Xi)−vi(Xh

i ) ≤
v̂i(Xi′)−2−v̂i(Xh

i′) = v̂i(X
′
i′)−2, implying that the alloca-

tion was not F-EF1 before category h; a contradiction.

5 Partition Matroids with Two Agents
In this section we present an algorithm for 2 agents.
Theorem 5.1. In every setting with two agents and partition
matroid constraints, an F-EF1 allocation exists and can be
computed efficiently by RR2.

To present the algorithm we introduce some notation.
• Given an allocation X, the surplus of agent i in category
h is shi (X) := v̂i(X

h
i )− v̂i(Xh

j ).
I.e., it is the difference between agent i’s value for her
own bundle and her value for agent j’s bundle.

• Given agents 1, 2, ` ∈ {1, 2}, valuation functions v, v′
and category h, χ(v, v′, `)h is the allocation obtained by
Capped Round Robin (CRR) (see Section 2) for category
h, under valuations v1 = v, v2 = v′, and where agent `
plays first. When clear in the context, we omit the super-
script h from χ(v, v′, `)h.
We are now ready to present Algorithm “Round Robin

Squared” (RR2) . In RR2, there are two layers of round
robin (RR), one layer for choosing the next category, and one
layer for choosing items within a category. For every agent
i, the categories are ordered based on shi (χ(v1, v2, i)), in a
non-increasing order; call this order πi. In the first iteration,
agent 1 chooses the first category in π1. Within this cate-
gory, the items are allocated according to CRR, with agent 1

choosing first. In the second iteration, agent 2 chooses the
first category in π2 that has not been chosen yet. Within
this category, the items are allocated according to CRR, with
agent 2 choosing first. The algorithm proceeds in this way,
where in every iteration, the agent who chooses the next cat-
egory flips; that agent chooses the highest unallocated cate-
gory in her surplus-order, and within that category, agents
are allocated according to CRR with that agent choosing
first. This proceeds until all categories are allocated.

The key lemma in our proof asserts that the surplus of an
agent i when playing first within a category h is at least as
large as minus the surplus of the same agent when playing
second in the same category. I.e.,

Lemma 5.2. For every category h and every i = 1, 2:
shi (χ(v1, v2, i)

h) ≥ −shi (χ(v1, v2, j)
h), where j = 3− i.

We now show how Lemma 5.2 implies the assertion of
Theorem 5.1.

Proof of Theorem 5.1. We first show that the first agent
choosing a category does not F-envy the other agents. That
is, vi(Xi) ≥ v̂i(Xj), where X is the outcome of RR2 and i
is the first agent to choose. By reordering, let C1, ..., C` be
the categories in the order they are chosen, and let agent 1
choose a category first. It holds that:

v1(X1)− v̂1(X2) =
∑

h=1,...,`

v1(Xh
1 )−

∑
h=1,...,`

v̂1(Xh
2 )

=
∑

h=1,...,`

(v1(Xh
1 )− v̂1(Xh

2 ))

=
∑

h is odd

sh1 (χ(v1, v2, 1)) +
∑

h is even

sh1 (χ(v1, v2, 2))

(1)

≥
∑

h is odd

sh1 (χ(v1, v2, 1)) +
∑

h is even

−sh1 (χ(v1, v2, 1))

(2)

=
∑

t=1,..., `2

(s2t−11 (χ(v1, v2, 1))− s2t1 (χ(v1, v2, 1))). (3)

The first equations follow from additivity. Equation 1 fol-
lows from the definition of surplus, the facts that agent 1
chooses the odd categories, and the agent who chooses the
category is the one to choose first within this category. In-
equality 2 follows from Lemma 5.2. If the number of cate-
gories is odd, we add a dummy empty category.

Since agent 1 chooses the odd categories, and she does so
based on highest surplus, for every t s2t−11 (χ(v1, v2, 1)) ≥
s2t1 (χ(v1, v2, 1)), as category 2t was available when agent 1
chose category 2t−1. Therefore, every summand in the sum
of (3) is non-negative. Thus, the whole sum is non-negative,
implying that v1(X1) ≥ v̂1(X2), as desired.

We next show that agent 2 does not F-envy agent 1 beyond
F-EF1. As a thought experiment, consider the same setting
with the first chosen category removed. Following the same
reasoning as above, in this setting agent 2 does not F-envy
agent 1. But within the first category, agent 2 can only F-
envy agent 1 up to 1 item. That is, there exists one item in the
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first category such that when it is removed, it eliminates the
feasible envy of the second agent within that category, and
thus eliminates her feasible envy altogether. We conclude
that the obtained allocation is F-EF1.

6 BO Matroids with up to Three Agents
In this section we consider constraints that are represented
by a wide class of matroids, termed base-orderable (BO)
matroids, defined as follows:

Definition 6.1 (Brualdi and Scrimger (1968)). A matroid
is BO if for every two bases I, J , there exists a bijection
µ : I → J such that for any i ∈ I: I \ {i} ∪ {µ(i)} ∈ I and
J \ {µ(i)} ∪ {i} ∈ I.

This class contains many interesting matroids, including
partition matroids, laminar matroids, transversal matroids,
and more. Bonin and Savitsky (2016) conjectures that al-
most all matroids are BO. When different agents have differ-
ent matroids, an F-EF1 allocation may not exist. Therefore,
we restrict attention to settings with identical matroids. In
this setting, Biswas and Barman (2019) find an EF1 alloca-
tion for n agents with laminar matroids and identical valua-
tions. Using their algorithm as a subroutine, and extending it
to BO matroids, it is easy to find an EF1 allocation for n = 2
agents with different valuations (see full version). The case
of n ≥ 3 heterogeneous additive agents remains open. In
what follows, we establish existence for 3 agents with het-
erogeneous binary valuations.

Theorem 6.2. For identical BO matroid constraints, for 3
agents with heterogeneous binary valuations, there exists an
EF1 allocation that is also social welfare maximizing(SWM)
(hence Pareto-efficient).

The proof uses an algorithm, called Iterated Swaps (see
full version). The algorithm starts by finding an SWM allo-
cation X. Given such allocation, the algorithm constructs a
new allocation X̂ which is EF1 and SWM. The algorithm
works as follows: as long as there exist agents i, j such that
Envy+X(i, j) > 1, if possible (feasibility-wise), transfer an
item desired by i from j to i. Otherwise, swap items between
i and j, such that i gets from j an item that i desires, and j
gets from i an item that i does not desire. We prove that one
of these options always exists, and the process terminates
with an EF1 and SWM allocation.

Definition 6.3. Given a matroid (M, I) and 2 independent
sets I, J ∈ I, items a ∈ I and b ∈ J represent a feasible
swap if both (J \ {b}) ∪ {a} and (I \ {a}) ∪ {b} are in I.

To prove Theorem 6.2 we use the following lemmas.

Lemma 6.4. In a BO matroid-constrained setting with bi-
nary valuations, if agent i envies agent j under a feasible
SWM allocation X, then one of the following holds:

1. There exists an item a ∈ Xj s.t. vi(a) = vj(a) = 1 and
Xi ∪ {a} ∈ I;

2. There exist items a ∈ Xj , b ∈ Xi s.t. vi(a) = vj(a) = 1,
vi(b) = vj(b) = 0, and a, b represent a feasible swap.

We refer to such a transfer or swap as a smart move. The
following is a direct corollary of Lemma 6.4:

Corollary 6.5. Given a SWM allocation X, an allocation
X′ obtained from X by a smart move is also SWM.

Finally, we also use the following lemma:
Lemma 6.6. Let X be a SWM allocation where
Envy+X(i, j) > 1, and let X′ be an allocation obtained from
X by a smart move. Then:
(i)Envy+X′(i, j) = Envy+X(i, j)−2; (ii)Envy+X′(j, i) = 0.

We are now ready to prove Theorem 6.2. In the proof,
when we mention a change in Envy+X(i, j) we refer to the
change in the positive envy of agent i to agent j between
allocations X and X′; i.e., to Envy+X′(i, j)−Envy+X(i, j).

Proof of Theorem 6.2. Let X be a feasible SWM alloca-
tion. If X is EF1, we are done. Otherwise, as long as
X is not EF1, choose some pair of agents i, j such that
Envy+X(i, j) > 1. Since X is SWM (by Corollary 6.5), j
does not envy i (otherwise, switching i and j’s bundles in-
creases social welfare, a contradiction to SWM).

Let Φ(·) be the following potential function:
Φ(X) :=

∑
i

∑
j 6=iEnvy

+
X(i, j). By Lemmas 6.4 and 6.6,

there must exist a feasible smart move between i, j such that
the social welfare remains unchanged, Envy+X(i, j) drops
by 2 and Envy+X(j, i) remains 0. Thus, Envy+X(i, j) +

Envy+X(j, i), drops by 2.
Let us next consider the positive envy that might be added

due to terms of Φ that include the third agent, deonte it by k.

1. Envy+X(i, k) cannot increase, as the smart move im-
proves i’s valuation, while vi(Xk) does not change.

2. Envy+X(k, i) increases by at most 1: the largest possible
increase in vk(X ′i) is 1, while vk(Xk) does not change.

3. Envy+X(k, j) increases by at most 1: the largest possible
increase in vk(X ′j) is 1, while vk(Xk) does not change.

4. Envy+X(j, k) increases by at most 1, as this is the exact
decrease in vj(X ′j), while vj(Xk) does not change.

We next claim that among the terms that may increase by 1
(#2,#3,#4), no two of them can increase simultaneously:

• Envy+X(k, j), Envy+X(j, k) cannot increase simultane-
ously as this would create an envy-cycle, contradicting
SWM.

• Envy+X(k, i), Envy+X(j, k) cannot increase simultane-
ously, as this together with the fact that Envy+X(i, j) ≥ 0
contradicts SWM. Indeed shifting bundles along the cycle
i→ j → k → i strictly increases welfare.

• Envy+X(k, i), Envy+X(k, j) cannot increase simultane-
ously as the sum of k’s values to i and j’s bundles is fixed;
i.e., vk(Xi) + vk(Xj) = vk(X ′i) + vk(X ′j).

We conclude that in every iteration the potential func-
tion drops by at least 1. Indeed, Envy+X(i, j) drops by 2,
Envy+X(j, i) remains 0, Envy+X(i, k) does not change, and
among Envy+X(k, i), Envy+X(k, j), Envy+X(j, k) only one
can increase, by at most 1. Since Φ is lower bounded by 0,
the process terminates, and the obtained allocation is feasi-
ble, EF1 and SWM as desired.
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Bouveret, S.; Cechlárová, K.; Elkind, E.; Igarashi, A.; and Peters,
D. 2017. Fair division of a graph. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence, 135–141.

Bouveret, S.; and Lemaı̂tre, M. 2016. Characterizing conflicts in
fair division of indivisible goods using a scale of criteria. Au-
tonomous Agents and Multi-Agent Systems 30(2): 259–290.

Brualdi, R. A.; and Scrimger, E. B. 1968. Exchange systems,
matchings, and transversals. Journal of Combinatorial Theory
5(3): 244 – 257.

Budish, E. 2011. The combinatorial assignment problem: Approx-
imate competitive equilibrium from equal incomes. Journal of Po-
litical Economy 119(6): 1061–1103.

Budish, E.; Cachon, G. P.; Kessler, J. B.; and Othman, A. 2017.
Course match: A large-scale implementation of approximate com-
petitive equilibrium from equal incomes for combinatorial alloca-
tion. Operations Research 65(2): 314–336.

Caragiannis, I.; Kurokawa, D.; Moulin, H.; Procaccia, A. D.; Shah,
N.; and Wang, J. 2019. The unreasonable fairness of maximum
Nash welfare. ACM Transactions on Economics and Computation
(TEAC) 7(3): 1–32.

Darmann, A.; and Schauer, J. 2015. Maximizing Nash product
social welfare in allocating indivisible goods. European Journal of
Operational Research 247(2): 548–559.

Dror, A.; Feldman, M.; and Segal-Halevi, E. 2020. On Fair Di-
vision under Heterogeneous Matroid Constraints. arXiv preprint
arXiv:2010.07280 .

Ferraioli, D.; Gourvès, L.; and Monnot, J. 2014. On regular and
approximately fair allocations of indivisible goods. In Proceedings
of the 2014 international conference on Autonomous agents and
multi-agent systems, 997–1004.

Garg, N.; Kavitha, T.; Kumar, A.; Mehlhorn, K.; and Mestre, J.
2010. Assigning papers to referees. Algorithmica 58(1): 119–136.

Gourvès, L.; and Monnot, J. 2019. On maximin share allocations in
matroids. Theoretical Computer Science 754: 50–64. Preliminary
version appeared in CIAC 2017.

Gourvès, L.; Monnot, J.; and Tlilane, L. 2013. A protocol for cut-
ting matroids like cakes. In International Conference on Web and
Internet Economics, 216–229. Springer.

Gourvès, L.; Monnot, J.; and Tlilane, L. 2014. Near Fairness in
Matroids. In ECAI 2014 - 21st European Conference on Artificial
Intelligence, volume 263 of Frontiers in Artificial Intelligence and
Applications, 393–398. IOS Press.

Halpern, D.; Procaccia, A. D.; Psomas, A.; and Shah, N. 2020.
Fair Division with Binary Valuations: One Rule to Rule Them All.
In Web and Internet Economics - 16th International Conference,
WINE 2020, Beijing, China, December 7-11, 2020, Proceedings,
volume 12495 of Lecture Notes in Computer Science, 370–383.

Klaus, B.; Manlove, D. F.; and Rossi, F. 2016. Matching under
preferences. Cambridge University Press.

Lian, J. W.; Mattei, N.; Noble, R.; and Walsh, T. 2018. The Confer-
ence Paper Assignment Problem: Using Order Weighted Averages
to Assign Indivisible Goods. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), 1138–1145.
AAAI Press.

5319



Lipton, R. J.; Markakis, E.; Mossel, E.; and Saberi, A. 2004. On
approximately fair allocations of indivisible goods. In Proceedings
of the 5th ACM conference on Electronic commerce, 125–131.

Long, C.; Wong, R. C.-W.; Peng, Y.; and Ye, L. 2013. On good and
fair paper-reviewer assignment. In 2013 IEEE 13th International
Conference on Data Mining, 1145–1150. IEEE.

Mackin, E.; and Xia, L. 2016. Allocating indivisible items in cate-
gorized domains. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, 359–365.

Nyman, K.; Su, F. E.; and Zerbib, S. 2020. Fair division with mul-
tiple pieces. Discrete Applied Mathematics 283: 115–122.

Okumura, Y. 2014. Priority matchings revisited. Games and Eco-
nomic Behavior 88: 242–249.

Oxley, J. G. 2006. Matroid theory, volume 3. Oxford University
Press, USA.
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