
Combinatorial Auctions with Interdependent Valuations: 
SOS to the Rescue
Alon Eden,a,* Michal Feldman,b Amos Fiat,b Kira Goldner,c Anna R. Karlind 

a School of Computer Science and Engineering, Hebrew University, 9190401 Jerusalem, Israel; b School of Computer Science, Tel Aviv 
University, 6997801 Tel Aviv, Israel; c Faculty of Computing & Data Sciences, Boston University, Boston, Massachusetts 02215; d Paul G. Allen 
School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195 
*Corresponding author 
Contact: alon.eden@mail.huji.ac.il, https://orcid.org/0000-0002-0907-3914 (AE); mfeldman@tau.ac.il, https://orcid.org/0000-0002-2915-8405 (MF); 
fiat@tau.ac.il, https://orcid.org/0000-0002-5748-9519 (AF); goldner@bu.edu, https://orcid.org/0000-0003-3008-2724 (KG); 
karlin@cs.washington.edu (ARK) 

Received: August 13, 2021 
Revised: June 9, 2022 
Accepted: December 8, 2022 
Published Online in Articles in Advance: 
May 15, 2023 

MSC2020 Subject Classifications: Primary: 
91B03, 91A68, 91B26, 91B44 

https://doi.org/10.1287/moor.2023.1371 

Copyright: © 2023 INFORMS

Abstract. We study combinatorial auctions with interdependent valuations, where each 
agent i has a private signal si that captures her private information and the valuation func
tion of every agent depends on the entire signal profile, s � (s1, : : : , sn). The literature in eco
nomics shows that the interdependent model gives rise to strong impossibility results and 
identifies assumptions under which optimal solutions can be attained. The computer sci
ence literature provides approximation results for simple single-parameter settings (mostly 
single-item auctions or matroid feasibility constraints). Both bodies of literature focus 
largely on valuations satisfying a technical condition termed single crossing (or variants 
thereof). We consider the class of submodular over signals (SOS) valuations (without imposing 
any single crossing-type assumption) and provide the first welfare approximation guaran
tees for multidimensional combinatorial auctions achieved by universally ex post incentive- 
compatible, individually rational mechanisms. Our main results are (i) four approximation 
for any single-parameter downward-closed setting with single-dimensional signals and 
SOS valuations; (ii) four approximation for any combinatorial auction with multidimen
sional signals and separable-SOS valuations; and (iii) (k+3) and (2 log(k)+4) approximation 
for any combinatorial auction with single-dimensional signals, with k-sized signal space, for 
SOS and strong-SOS valuations, respectively. All of our results extend to a parameterized 
version of SOS, d-approximate SOS, while losing a factor that depends on d.
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1. Introduction
The classic setting considered in auction design is that of independent private values IPV. In 1982, Milgrom and Weber 
[30] introduced the model of interdependent values IDV, building upon the seminal prior work of Wilson [42] on com
mon values. In the model of interdependent values, an agent’s value depends on information distributed among a wide 
set of agents. The importance of this model was recently celebrated in the 2020 Nobel Prize in Economics awarded to 
Milgrom and Weber [30] for “the improvement to auction theory and inventions of new auction formats”.

In this setting, every agent has a private signal (or set of signals) si that captures the information the agent has regard
ing the goods for sale. The valuation of every agent is a (known) function vi(s1, : : : , sn) of all the agents’ private signals. 
A typical example of interdependent values is the weighted sum valuation (see, e.g., Myerson [31], Roughgarden and 
Talgam-Cohen [37]). In this example, vi(s) � si + β

P
j≠isj for some β ≤ 1. This type of valuation function captures set

tings where an agent’s value depends both on how much he likes the item (si) and on the resale value, which is natu
rally estimated in terms of how much other agents like the item (

P
j≠isj).

Interdependent values capture important real-world settings, such as valuations for oil drilling rights, broad
cast rights, artwork, and many more. Essentially, every setting that exhibits asymmetry of information amongst 
agents is a setting of interdependent values. This setting is much more realistic than the more standard model 
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of independent private values. However, once we move from the standard model of independent values to 
interdependent values, the economics literature provides mainly strong impossibility results (Dasgupta and 
Maskin [15], Jehiel and Moldovanu [23]).

1.1. Maximizing Social Welfare
Consider the goal of maximizing social welfare in interdependent settings. Here, a direct revelation mechanism consists 
of each agent i reporting a bid for their private signal si and the auctioneer determining the allocation and payments. (It 
is assumed that the auctioneer knows the form of the valuation functions vi(·).)

In interdependent settings, it is not possible (except perhaps in degenerate situations) to design dominant-strategy 
incentive-compatible (DSIC) auctions because an agent’s value depends on all of the signals; if, say, agent i misreports 
his signal, then agent j might win at a price above her value if she reports truthfully. The next strongest equilibrium 
notion one could hope for is to maximize efficiency in ex post equilibrium; bidding truthfully is an ex post equilibrium if 
an agent does not regret having bid truthfully, given that other agents bid truthfully. In other words, bidding truthfully 
is a Nash equilibrium for every signal profile. Note that every ex post equilibrium is a Bayes–Nash incentive- 
compatible equilibrium but not necessarily vice versa, and therefore, ex post equilibria are much more robust; they do 
not depend on knowledge of the priors, and bidders need not think about how other bidders might be bidding. This 
increases our confidence that an ex post equilibrium is likely to be reached.

Maximizing social welfare with private valuations is a solved problem. The classical Vickrey–Clarke–Grove (VCG) fam
ily of mechanisms (Clarke [12], Groves [21], Vickrey [40]), of which the Vickrey second-price auction is a special case, is 
dominant strategy incentive compatible and guarantees optimal social welfare in general social choice settings. In the 
interdependent values setting, however, the situation is much more complex. Prior research on interdependent values 
considered the highly restricted single-parameter setting and even within this setting, only valuations satisfying a tech
nical condition called “single crossing” (SC) (Athey [3], Ausubel [4], Bergemann et al. [7], Chawla et al. [10], Che et al. 
[11], Dasgupta and Maskin [15], d’Aspremont and Gérard-Varet [16], Li [27], Maskin [28], Milgrom and Weber [30], 
Roughgarden and Talgam-Cohen [37]). Unfortunately, the single-crossing condition does not generally suffice to obtain 
optimal social welfare in settings beyond that of a single-item auction with single-dimensional signals. It is insufficient 
in fairly simple settings, such as two-item, two-bidder auctions with unit-demand valuations (see Appendix A) or 
single-parameter settings with downward-closed feasibility constraints (see Appendix B).

Moreover, there are many relevant single-item settings where the single-crossing condition does not hold. For exam
ple, suppose that the signals indicate demand for a product being auctioned, agents represent firms, and one firm has a 
stronger signal about demand but is in a weaker position to take advantage of that demand. A setting like this could 
yield valuations that do not satisfy the single-crossing condition. For a concrete example, consider the following scenario 
given by Dasgupta and Maskin [15] and Maskin [28].

Example 1. Suppose that oil can be sold in the market at a price of four dollars per unit and that two firms are com
peting for the right to drill for oil. Firm 1 has a fixed cost of one to produce oil and a marginal cost of two for each 
additional unit produced, whereas firm 2 has a fixed cost of two and a marginal cost of one for each additional unit 
produced. In addition, suppose that firm 1 does a private test and discovers that the expected size of the oil reserve is 
s1 units. Then, v1(s1, s2) � (4� 2)s1� 1 � 2s1� 1, whereas v2(s1, s2) � (4� 1)s1� 2 � 3s1� 2. These valuations do not 
satisfy the single-crossing condition because firm 1 needs to win when s1 is low and lose when s1 is high.

In this paper, we step away from both the single-crossing assumption and simple single-parameter settings. 
We present the first welfare approximation guarantees for interdependent values in much more general settings, 
encompassing a wide range of combinatorial auctions. The generalized Vickrey auction (Ausubel [4]) for interde
pendent values is a generalization of the seminal Vickrey [40] auction designed for independent private values. 
Similarly, our auction for interdependent values can be viewed as an extension of the VCG auction (Clarke [12], 
Groves [21]) for independent private values.

Although the VCG auction maximizes welfare when valuations are private and independent and although the 
generalized Vickrey auction maximizes welfare when single crossing holds, maximizing social welfare in combi
natorial interdependent settings is known to be impossible (Dasgupta and Maskin [15], Jehiel and Moldovanu 
[23]). We circumvent this impossibility result by relaxing the goal of welfare maximization and considering 
approximation guarantees. In very general combinatorial settings and subject to a very natural condition (which 
we term “submodularity over signals”(SOS)), we devise an incentive-compatible mechanism that is guaranteed 
to give at least 1/4 of the optimal social welfare.

1.2. Research Problems
This paper addresses the following two issues related to social welfare maximization in the interdependent values model. 
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1. To what extent can the optimal social welfare be approximated in interdependent settings that do not satisfy 
the single-crossing condition?

2. How far beyond the single-item, single-dimensional setting can we go?
Given the impossibility result of Jehiel and Moldovanu [23], we ask if it is possible to approximately maximize social wel
fare in combinatorial auctions with interdependent values.

The first question was recently considered by Eden et al. [19], who gave two examples pointing out the difficulty of 
approximating social welfare without single crossing. Example 2 shows that even with two bidders and one signal, 
there are valuation functions for which no deterministic auction can achieve any bounded approximation ratio to opti
mal social welfare.

Example 2 (No Bound for Deterministic Auctions (Eden et al. [19])). A single item is for sale. There are two 
players, A and B; only A has a signal sA ∈ {0, 1}. The valuations are

vA(0) � 1 vB(0) � 0
vA(1) � 2 vB(1) �H, 

where H is an arbitrary large number. If A does not win when sA�0, then the approximation ratio is infinite. On the 
other hand, if A does win when sA�0, then by monotonicity, A must also win at sA�1, yielding a 2/H fraction of the 
optimal social welfare.

The next example can be used to show that there are valuation functions for which no randomized auction per
forms better (in the worst case) than allocating to a random bidder (i.e., a factor n approximation to social wel
fare), even if a prior over the signals is known.

Example 3 (n Lower Bound for Randomized Auctions (Eden et al. [19])). There are n bidders 1, … , n that compete 
over a single item. For every agent i, si ∈ {0, 1}, and

vi(s) �
Y

j≠i
sj + ɛ · si for ɛ→ 0;

that is, agent i’s value is high if and only if all other agents’ signals are high simultaneously. When all signals are one, then 
in any feasible allocation, there must be an agent i, which is allocated with probability of at most 1/n. By monotonicity, 
this means that the probability this agent is allocated when the signal profile is s′ � (1�i, 0i) is at most 1/n as well. There
fore, the achieved welfare at signal profile s′ is at most 1=n+ (n� 1) · ɛ, whereas the optimal welfare is one, giving a factor 
n gap. Eden et al. [19] show that there exists a prior for which the n gap still holds, even if the mechanism knows the prior.

Therefore, some assumption is needed if we are to get good approximations to social welfare. The approach 
taken by Eden et al. [19] was to define a relaxed notion of single crossing that they called c-single crossing and 
then, provide mechanisms that approximately maximize social welfare, where the approximation ratio depends 
on c and n, the number of agents.

In this paper, we go in a different direction starting with the observation that in Example 3, the valuations treat the signals 
as highly complementary; one has a value bounded away from zero only if all other agent’s signals are high simulta
neously. This suggests that the case where the valuations treat the signals more like “substitutes” might be easier to handle.

We capture this by focusing on SOS valuations. This means that for every i and j, when signals s�j are lower, 
the sensitivity of the valuation vi(s) to changes in sj is higher. Formally, we assume that for all j, for any sj, δ ≥ 0, 
and for any s�j and s′�j such that component wise, s�j ≤ s′�j, it holds that

vi(sj + δ, s�j)� vi(sj, s�j) ≥ vi(sj + δ, s′�j)� vi(sj, s′�j):

Many valuations considered in the literature on interdependent valuations are SOS (although this term is not 
used) (Dasgupta and Maskin [15], Klemperer [26], Milgrom and Weber [30]). The simplest (yet still rich) class of 
SOS valuations is fully separable valuation functions, where there are arbitrary (weakly increasing) functions gij(sj)

for each pair of bidders i and j such that

vi(s) �
Xn

j�1
gij(sj):

This type of valuation function is ubiquitous in the economics literature on interdependent settings, often with the func
tion simply assumed to be a linear function of the signals (see, e.g., Jehiel and Moldovanu [23], Klemperer [26]).

The family of fully separable functions includes the weighted sum valuations discussed and the mineral rights 
model (Roughgarden and Talgam-Cohen [37], Wilson [42]). A more general class of SOS valuation functions 
includes functions of the form vi(s) � f (

Pn
j�1 gij(sj)), where f is a weakly increasing concave function.
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We can now state the main question we study in this paper. To what extent can social welfare be approximated in 
interdependent settings with SOS valuations? Unfortunately, Example 2 itself describes SOS valuations, so no deter
ministic auction can achieve any bounded approximation ratio, even for this subclass of valuations. Thus, we 
must turn to randomized auctions.

1.3. Our Results and Techniques
All of our positive results concern the design of randomized, prior-free, universally ex post IC, individually rational (IR) 
mechanisms. Prior free means that the rules of the mechanism make no use of the prior distribution over the signals 
and thus, need not have any knowledge of the prior.

Our first result provides approximation guarantees for single-parameter downward-closed settings. An important 
special case of this result is single-item auctions, which was the focus of Eden et al. [19].

See Theorem 1 (in Section 4). For every single-parameter downward-closed setting, if the valuation functions are 
SOS, then the random sampling Vickrey (RS-V) auction is a universally ex post IC-IR mechanism that gives a four 
approximation to the optimal social welfare.

Interestingly, no deterministic mechanism can give better than an (n� 1) approximation for arbitrary downward- 
closed settings, even if the valuations are single crossing, and this is tight. Recall that for a single-item auction or even 
multiple identical items, with single-crossing valuations, the deterministic generalized Vickrey auction obtains the opti
mal welfare (Ausubel [4], Maskin [28]).

We then turn to multidimensional settings. In the most general combinatorial auction model that we consider, each 
agent i has a signal siT for each subset T of items and a valuation function viT :� viT(s1T, s2T, : : : , snT). For this setting, 
maximizing social welfare in ex post equilibrium might be impossible (see related work and also Propositions A.1, A.2, 
and B.2, which show that under one natural generalization of single crossing for combinatorial settings, single crossing 
is not sufficient for full efficiency).

However, rather surprisingly, for the case of separable SOS valuations (see Definition 16), we are able to extend the 
four-approximation guarantee to combinatorial auctions. Such valuations are prevalent in the literature and generalize 
the fully separable case discussed.

See Theorem 3 (in Section 5). For every combinatorial auction, if the valuation functions are separable SOS, then the 
random sampling VickreyClarkeGrove (RS-VCG) auction is a universally ex post IC-IR mechanism that gives a 
four approximation to the optimal social welfare.

Finally, we consider combinatorial auctions where each agent i has a single-dimensional signal si but where the valua
tion function viT for each subset of items T is an arbitrary SOS valuation function viT(s1, : : : , sn). For this case, we show 
the following.

See Theorems 4 and 5 (in Sections 6.1 and 6.2). Consider combinatorial auctions with single-dimensional signals, 
where each signal takes one of k possible values. If the valuation functions are SOS, then there exists a universally ex 
post IC-IR mechanism that gives a (k+ 3) approximation to the optimal social welfare. If the valuations are strong SOS 
(see Definition 14), the approximation ratio improves to O(log k).

All of the results, as well as our lower bounds, are summarized in Table 1. In addition, all of the results in this paper gen
eralize easily, with a corresponding degradation in the approximation ratio, to the weaker requirement of a d-approximate 
submodular over signals (d-SOS) valuations (see Definition 13).

1.3.1. Intuition for Results. The fundamental tension in settings with interdependent valuations that is not present in 
the private values setting is the following. Consider, for example, a single-item auction setting where agent 1’s truthful 
report of her signal increases agent 2’s value. Because this increases the chance that agent 2 wins and may decrease agent 
1’s chance of winning, it might motivate agent 1 to strategize and misreport.

Our approach is to simply prevent this interaction. Without looking at the signals, our mechanism randomly divides 
the agents into two sets: potential winners and certain losers. Losers never receive any allocation. When estimating the 

Table 1. The approximation factors achievable for social welfare maximization with SOS and strong-SOS valuations. Simi
lar results hold for d-approximate SOS/strong-SOS valuations while losing a factor that depends on d. All positive results 
are obtained with universally ex post IC-IR randomized mechanisms.

Setting Approximation guarantees

Single-parameter SOS valuations, downward-closed feasibility, single-dimensional signals ≤4, ∀mech: ≥ 2 (Section 4)
Arbitrary combinatorial SOS valuations, single-dimensional signals, k-sized signal space ≤k + 3, ∀mech: ≥ 2 (Section 6.1)
Arbitrary combinatorial strong-SOS valuations, single-dimensional signals, k-sized signal space ≤log(k) + 2, ∀mech: ≥ 2 (Section 6.2)
Combinatorial separable-SOS valuations, multidimensional signals ≤4, ∀mech: ≥ 2 (Section 5)
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value of a potentially winning agent i, we use only the signals of losers and i’s own signal(s). Thus, potential winners 
cannot impact the estimated values and hence, allocations of other potential winners. This resolves the truthfulness 
issue. The remaining question is as follows. Can we get sufficiently accurate estimates of the agents’ values when we 
ignore so many signals?

The key lemma (Lemma 2 in Section 3) shows that we can do so when the valuations are SOS. Specifically, for any 
agent i, if all agents other than i are split into two random sets A (losers) and B (potential winners) and the signals of 
agents in the random subset B are “zeroed out,” then the expected value agent i has for the item is at least half of her 
true valuation. That is,

EA[vi(si, sA, 0B)] ≥
1
2 vi(s):

Dealing with combinatorial settings is more involved as the truthfulness characterization is less obvious, but the key 
ideas of random partitioning and using the signals of certain losers remain at the core of our results.

1.3.2. Additional Remarks. Although this paper deals entirely with welfare maximization, our results have signifi
cance for the objective of maximizing the seller’s revenue. Eden et al. [19] give a reduction from revenue maximization 
to welfare maximization in single-item auctions under a weaker submodularity condition, which follows from SOS. 
Thus, the constant factor approximation mechanism presented in this paper implies a constant factor approximation to 
the optimal revenue in single-item auctions with SOS valuations. We note that this is the first revenue approximation 
result that does not assume any single crossing-type assumption (Chawla et al. [10], Eden et al. [19], Li [27], and Rough
garden and Talgam-Cohen [37] require single crossing or approximate single crossing).

Finally, one can easily verify that, based on Yao’s min-max theorem, the existence of a randomized prior-free mechanism 
that gives some approximation guarantee (in expectation over the coin flips of the mechanism) implies the existence of 
a deterministic prior-dependent mechanism that gives the same approximation guarantee (in expectation over the signal 
profiles).

1.4. More on Related Work
As discussed, in single-parameter settings, there is an extensive literature on mechanism design with interdependent 
valuations that considers social welfare maximization, revenue maximization, and other objectives. However, the vast 
majority of this literature assumes some kind of single-crossing condition and in the context of social welfare, focuses 
on exact optimization.

There are two papers that we are aware of that study the question of how well optimal social welfare can be approxi
mated in ex post equilibrium without single crossing. The first is the aforementioned paper (Eden et al. [19]) on single-item 
auctions with interdependent valuations. They defined a parameterized version of single crossing, termed c-single crossing, 
where c> 1 is a parameter that indicates how close the valuation profile is to satisfy single crossing. For c–single-crossing 
valuations, they provide a number of results, including a lower bound of c on the approximation ratio achievable by any 
mechanism, a matching upper bound for binary signal spaces, and mechanisms that achieve approximation ratios of 
(n� 1)c and 2c3=2 ffiffiffi

n
√

(the first is deterministic, and the second is randomized).
Ito and Parkes [22] also consider approximating social welfare in the interdependent setting. Specifically, they pro

pose a greedy contingent-bid auction (a la Dasgupta and Maskin [15]) and show that it achieves a 
ffiffiffiffi
m
√

approximation to 
the optimal social welfare for m goods, in the special case of combinatorial auctions with single-minded bidders.

For multidimensional signals and settings, the landscape is sparser (and bleaker) and to our knowledge, focuses on 
exact social welfare maximization. Maskin [28] has observed that, in general, no efficient incentive-compatible single- 
item auction exists if a buyer’s valuation depends on a multidimensional signal.

Jehiel and Moldovanu [23] consider a very general model in which there is a set K of possible alternatives and a mul
tidimensional signal space, where each agent j has a signal sj

ki for each outcome k and other agent j. In their model, the 
valuation function of an agent i for outcome k is linear in the signals: that is, vi(k) :�

P
ja

j
kis

j
ki. Thus, their valuation func

tions are, in one sense, a special case of our separable valuation functions. On the other hand, they are more general in 
that all quantities depend on the outcome k. Thus, there are allocation externalities. Their main result is that, generically, 
there is no Bayes–Nash incentive-compatible mechanism that maximizes social welfare in this setting. However, they 
do give an ex post IC mechanism that maximizes social welfare with both information and allocation externalities if the 
signals are one-dimensional, the valuation functions are linear in the signals, and a single crossing-type condition holds.

Jehiel et al. [24] go on to show that the only deterministic social choice functions that are ex post implementable in 
generic mechanism design frameworks with multidimensional signals, interdependent valuations and transferable utili
ties, are constant functions.
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Finally, Bikhchandani [9] considers a single-item setting with multidimensional signals but no allocation externalities 
and shows that there is a generalization of single crossing that allows some social choice rules to be implemented 
ex post.

For further analysis and discussion of implementation with interdependent valuations, see, for example, Bergemann 
and Morris [6] and McLean and Postlewaite [29].

For further literature in computer science on interdependent and correlated values, see Abraham et al. [1], Babaioff 
et al. [5], Chawla et al. [10], Che et al. [11], Constantin and Parkes [13], Constantin et al. [14], Dobzinski et al. [17], Syrgka
nis et al. [39], Klein et al. [25], Li [27], Papadimitriou and Pierrakos [33], Robu et al. [34], and Ronen [36].

The idea of using a random sampling approach in the mechanism design literature was introduced in Goldberg 
et al. [20].

2. Model and Definitions
2.1. Single-Parameter Settings
In Section 4, we will consider single-parameter settings with interdependent valuations and downward-closed feasibil
ity constraints. In these settings, a mechanism decides which subsets of agents 1, … , n are to receive “service” (e.g., an 
item). The feasibility constraint is defined by a collection I ⊆ 2[n] of subsets of agents that may feasibly be served simul
taneously. We restrict attention to downward-closed settings, which means that any subset of a feasible set is also feasible. 
A simple example is a k-item auction, where I is the collection of all subsets of agents of size at most k. For these set
tings, we use the interdependent value model of Milgrom and Weber [30].

Definition 1 (Single-Dimensional Signals, Single-Parameter Valuations). Each agent j has a private signal sj ∈ R+. 
The value agent j gives to “receiving service” vj(s) ∈ R+ is a function of all agents’ signals s � (s1, s2, : : : , sn). The 
function vj(s) is assumed to be weakly increasing in each coordinate and strictly increasing in si.

2.1.1. Deterministic Mechanisms. We provide formal definitions of the key concepts used pertaining to determinis
tic mechanisms.

Definition 2 (Deterministic Single-Parameter Mechanisms). A deterministic mechanism M� (x, p) in the downward- 
closed setting is a mapping from reported signals s � (s1, : : : , sn) to allocations x(s) � {xi(s)}1≤i≤n and payments p(s) �
{pi(s)}1≤i≤n, where xi(s) ∈ {0, 1} indicates whether agent i receives service and pi(s) is the payment of agent i. It is 
required that the set of agents that receive service is feasible (i.e., {i |xi(s) � 1} ∈ I ). (The mechanism designer knows the 
form of the valuation functions but learns the private signals only when they are reported.)

In order to reason about an agent’s behavior within a mechanism, we must define agent utility.

Definition 3 (Agent Utility). Given a deterministic mechanism (x, p), the utility of agent i when her true signal is si, 
she reports s′i , and the other agents report s�i is

ui(s′i , s�i |si) � xi(s′i , s�i)vi(si, s�i)� pi(s′i , s�i):

Agent i will report s′i so as to maximize ui(s′i , s�i |si). We use ui(s) to denote the utility when she reports truthfully 
(i.e., ui(si, s�i |si)).

Given this definition of utility, we can now define our notion of truthfulness.

Definition 4 (Deterministic Ex Post IC). A deterministic mechanism M � (x, p) in the interdependent setting is ex 
post IC if, irrespective of the true signals and given that all other agents report their true signals, there is no 
advantage to an agent to report any signal other than her true signal. In other words, assuming that s�i are the 
true signals of other bidders, ui(s′i , s�i |si) is maximized by reporting si truthfully.

Another natural condition for our agents to want to participate and tell the truth is ex post individual 
rationality.

Definition 5 (Deterministic Ex Post IR). A deterministic mechanism in the interdependent setting is ex post IR if, 
irrespective of the true signals and given that all other agents report their true signals, no agent gets negative util
ity by participating in the mechanism.

If a deterministic mechanism is both ex post IC and ex post IR, we say that it is ex post IC-IR. In order to 
achieve these conditions in the single-parameter setting, we must have a monotone allocation rule.

Definition 6. A deterministic allocation rule x is monotone if for every agent i, every signal profile of all other 
agents s�i, and every si ≤ s′i , it holds that xi(si, s�i) � 1⇒ xi(s′i , s�i) � 1.
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Proposition 1 (Roughgarden and Talgam-Cohen [37]). For every deterministic allocation rule x for single-parameter 
valuations, there exist payments p such that the mechanism (x, p) is ex post IC-IR if and only if xi is monotone for every 
agent i.

2.1.2. Randomized Mechanisms. Now, we add on the concepts relating to randomized mechanisms.

Definition 7. A randomized mechanism is a probability distribution over deterministic mechanisms.
We need a slightly different notion of truthfulness when our mechanism is randomized.

Definition 8 (Universal Ex Post IC-IR). A randomized mechanism is said to be universally ex post IC-IR if all 
deterministic mechanisms in the support are ex post IC-IR.

2.2. Combinatorial Valuations with Interdependent Signals
Sections 5 and 6 focus on combinatorial auctions, where there are n agents and m items. In these settings, a mecha
nism is used to decide how the items are partitioned among the agents. We consider two models for the interdepen
dent valuations.

Definition 9 (Single-Dimensional Signals, Combinatorial Valuations). Each agent i has a signal si ∈ R+. The value 
agent i gives to the subset of items T ⊆ [m], which we denote by vjT(s), is a function of s � (s1, s2, : : : , sn).

In this first model, each agent i only has a single piece of information, si, and these n aggregate pieces of infor
mation (one per agent) are relevant to any combinatorial set of items T. Hence, there is a valuation function for 
each agent i and the relevant set of items T, and it depends on these n pieces of information. In the second model, 
the agents rather have a (n-independent) piece of information that is relevant for each separate set of items, so i’s 
value for the set T depends on the information from all n agents for the bundle T specifically—the signals from 
agent 1 s1T, agent 2 s2T, and so forth.

Definition 10 (Multidimensional Combinatorial Signals, Combinatorial Valuations). Here, each agent has a signal for 
each subset of items; for any agent i, we use siT to denote agent i’s signal for subset of items T ⊆ [m]. The value agent i 
gives to set T is denoted by viT(sT), where sT � (s1T, s2T, : : : , snT) ∈ R+n. We use s to denote the set of all signals {sT}T⊆2m .

In both cases, each viT(·) is assumed to be a weakly increasing function of each signal and strictly increasing in 
si (or siT, respectively) and known to the mechanism designer.

We give subsequent definitions only for multidimensional combinatorial signals, as single-dimensional signals 
can be viewed as a special case of multidimensional signals where siT � si for all T.

2.2.1. Deterministic Mechanisms 
Definition 11 (Deterministic Mechanisms for Combinatorial Settings). A deterministic mechanism M� (x, p) is a 
mapping from reported signals s to allocations x � {xiT} (where each xiT ∈ {0, 1}) and payments p � {piT} for all 
1 ≤ i ≤ n and T ⊂ {1, : : : , m}. 
• Agent j is allocated the set T if and only if xjT(s) � 1.
• For each agent j, there is at most one T for which xjT(s) � 1.
• The sets allocated to different agents do not intersect.
• The payment for agent j when her allocation is set T is pjT(s).

Definition 12 (Agent Utility). The utility of agent i when her signals are si � {siT}T⊂2m , she reports s′i , and the other 
agents report s�i is

ui(s′i , s�i |si) �
X

T⊆2m
xiT(s′i , s�i)[viT(siT, s�iT)� piT(s′i , s�i)]:

Given a mechanism M� (x, p), agent i will report s′i so as to maximize ui(s′i , s�i |si). We use ui(s) to denote the util
ity when she reports truthfully (i.e., ui(si, s�i |si)).

The definitions of ex post IC and ex post IR for deterministic mechanisms for combinatorial settings are the same as 
the appropriate definitions for single-parameter mechanisms (Definitions 4 and 5 with the obvious modifications).

2.2.2. Randomized Mechanisms. As with single-parameter mechanisms, a randomized mechanism for a combin
atorial setting is a probability distribution over deterministic mechanisms for the combinatorial setting, and a random
ized mechanism is said to be universally ex post IC-IR if all deterministic mechanisms in the support are themselves ex 
post IC-IR.
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2.3. SOS
As discussed in Section 1, our results will rely on an assumption about the valuation functions that we call SOS. The 
SOS (strong-SOS) notion we use is the same as the weak diminishing returns (strong diminishing returns) submodular
ity notion in Bian et al. [8] and Niazadeh et al. [32] (weak diminishing returns submodularity was introduced in Soma 
and Yoshida [38], where it is termed “diminishing returns submodularity”). SOS was also used in Eden et al. [19], gen
eralizing a similar notion in Chawla et al. [10].

Definition 13 (d-Approximate Submodular over Signals Valuations). A valuation function v(s) is a d-SOS valuation 
if for all j, sj, δ ≥ 0,

s�j � (s1, : : : , sj�1, sj+1, : : : , sn) and s′�j � (s
′
1, : : : , s′j�1, s′j+1, : : : , s′n), 

such that s′�j is smaller than or equal to s�j coordinate wise; it holds that
d · (v(s′�j, sj + δ)� v(s′�j, sj)) ≥ v(s�j, sj + δ)� v(s�j, sj): (1) 

If v satisfies this condition with d� 1, we say that v is an SOS valuation function.
Essentially, when agents have SOS valuations, they are more sensitive to a change in some agent j’s signal—or 

agent j acquiring new information—when everyone else’s signals are lower: that is, when the other agents have 
less information. On the other hand, we also consider the notion of strong-SOS valuations. The difference here is 
that in addition to being more sensitive when others have lower signals, agents are also more sensitive to agent 
j’s signal changing—agent j acquiring new information—when agent j’s signal started lower (the agent started 
with less information). That is, in addition to submodularity, the valuation functions are essentially concave in sj, 
where increasing in sj also has a diminishing effect. For an example, consider the following additive functions, 
which are trivially SOS; v(s1, s2) � s1 + s2 is also strong SOS, whereas v(s1, s2) � 2s1 + 2s2 only satisfies SOS.

Definition 14 (d-Approximate Strong Submodular over Signals Valuations). A valuation function v(s) is a d-approx
imate strong submodular over signals (d-strong-SOS) valuation if for any j, δ ≥ 0,

s � (s1, : : : , sn) and s′ � (s′1, : : : , s′n), 

such that s′ is smaller than or equal to s coordinate wise; it holds that
d · (v(s′�j, s′j + δ)� v(s′�j, s′j )) ≥ v(s�j, sj + δ)� v(s�j, sj): (2) 

If v satisfies this condition with d� 1, we say that i’s valuation functions are “strong SOS.”

Definition 15 (SOS Valuations Settings). We say that a mechanism design setting with interdependent valuations 
is an SOS valuations setting or equivalently, that the agents have SOS valuations in each of the following cases. 
• Single-parameter valuations (as in Definition 1). For every i, the valuation function vi(s) is SOS.
• Combinatorial valuations with single-parameter signals (as in Definition 9). For every i and T, the valuation 

function viT(s) is SOS.
• Combinatorial valuations with multiparameter signals (as in Definition 10). For every i and T, viT(sT) is SOS, 

where sT � (s1T, : : : , snT).
Similar definitions can be given for d-SOS valuation settings and d-strong-SOS valuation settings.
Finally, in Section 5, we will specialize to the case of separable SOS valuations.

Definition 16 (Separable SOS Valuations). We say that sets of valuations as in Definition 10 are separable SOS 
valuations if for every agent i and subset T of items, viT(sT) can be written as

viT(sT) � g�iT(s�iT) + hiT(siT), 

where g�iT(·) is weakly increasing, hiT(·) is strictly increasing, and g�iT(s�iT) is itself an SOS valuation function.

Observation 1. A separable SOS valuation function is itself an SOS valuation function.
We can similarly define separable d-SOS valuations.

2.4. Comparison of Various Valuation Classes
Previous studies primarily use the SC condition in order to obtain positive results. Our work concentrates on the SOS 
condition, which enables stronger results. Nevertheless, the SC and SOS conditions are noncomparable, not even with 
respect to their approximate notions. In particular, the valuations in Example 2 satisfy SOS but not single crossing and 
require an arbitrarily big c to satisfy c-SC. Similarly, the valuations in the example in Eden et al. [18, proposition 2.3] are 
SC but not SOS and not even d-SOS for any d.
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Example 2 shows that under public valuations, deterministic mechanisms (which have been the focus in the IDV liter
ature until recently) cannot give any approximation in the absence of SC, even under the strong special case of SOS of 
fully separable valuations. The latter example (from Eden et al. [18]) shows that under private valuations, no mechanism 
(deterministic or randomized) can give better than n approximation in the absence of SOS, even if SC holds.

2.5. A Useful Fact About SOS Valuations

Lemma 1 (Submodularity over Sets of Signals). Let v : R+n→ R+ be a d-SOS function. Let A ⊆ [n] and B � [n] \A. 
For any sA, yA ∈ R

+ |A | , and sB, s′B ∈ R
+ |B | such that sB is smaller than s′B coordinate wise,

d · (v(sA + yA, sB)� v(sA, sB)) ≥ v(sA + yA, s′B)� v(sA, s′B):

Proof. Let i1, i2, : : : , i |A | be the elements of A. For 1 ≤ j ≤ |A | , let sj and s′j denote the vectors

sj � ((si1 + yi1), : : : , (sij + yij), sij+1 , : : : , si |A | , sB),

s′j � ((si1 + yi1), : : : , (sij + yij), sij+1 , : : : , si |A | , s′B):

Note that s |A | � (sA + yA, sB) and s′ |A | � (sA + yA, s′B).
It follows from the d-SOS definition that for every 1 ≤ j ≤ |A | ,

d · (v(sj)� v(sj�1)) ≥ v(s′j)� v(s′j�1
), (3) 

where s0 � (sA, sB) and s′0 � (sA, s′B).
Summing Equation (3) for j � 1, 2, : : : , |A | proves the claim. w

3. The Key Lemma
The following is a key lemma, which is used for both single-parameter and combinatorial settings.

Lemma 2. Let vi : R+n→ R+ be a d-SOS function. Let A be a uniformly random subset of [n] \ {i}, and let B :�

([n] \ {i}) \A. It now holds that

EA[vi(sA, 0B, si)] ≥
1

d+ 1 vi(s), 

where the expectation is over the random choice of A.

Proof. We consider two equiprobable events. 
• Event 1: A � S ⊂ [n] \ {i} is chosen as the random subset, and
• Event 2: A � T � ([n] \ {i}) \ S is chosen as the random subset.
Normalize the valuations so that vi(s) � 1, and define α,β ∈ [0, 1] such that

vi(sS, 0T, si) � α, vi(0S, sT, si) � β:

It follows that
β � vi(0S, sT, si) ≥ vi(0S, sT, si)� vi(0S, 0T, si)

≥ (vi(sS, sT, si)� vi(sS, 0T, si))=d
� (1� α)=d

�
βd + α ≥ 1, 

where the first inequality follows from nonnegativity of vi(0S, 0T, si), and the second inequality follows from vi being d- 
SOS and Lemma 1.

Similarly, we have that
αd + β ≥ 1:

Adding these two inequalities and rearranging gives

α + β ≥
2

d + 1 :

Partition the event space into pairs (S, T) that partition [n] \ {i}. For every such (S, T) pair, it follows 
that vi(sS, 0T, si) + vi(0S, sT, si) � α+ β ≥ 2=(d+ 1).
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We conclude with the following, where the third line follows from the fact that there are 2n�1=2 such (S, T) 
pairs that partition [n] \ {i}:

EA[vi(sA, 0B, si)] �
X

A⊆[n]\{i}
Pr[A] · vi(sA, 0B, si)

�
1

2n�1 ·
X

A⊆[n]\{i}
vi(sA, 0B, si)

≥
1

2n�1 ·
2n�1

2 ·
2

d+ 1 �
1

d+ 1 , 

as desired. w

4. Single-Parameter Valuations
In this section, we describe the RS-V mechanism that achieves a four approximation for single-parameter downward- 
closed environments with SOS valuations and a 2(d+ 1) approximation for d-SOS valuations. We then give a lower 
bound of two and 

ffiffiffi
d
√

for SOS and d-SOS valuations, respectively, even in the case of selling a single item.
Let I ⊆ 2[n] be a downward-closed set system. We present a mechanism that serves only sets in I and gets a 2(d+1) 

approximation to the optimal welfare.

4.1. RS-V

• Elicit bids s̃ from the agents.
• Partition the agents into two sets, A and B, uniformly at random.
• For i ∈ B, let wi � vi(s̃A, s̃i, 0B\{i}).
• Allocate to a set of bidders in

arg max
S∈I : S⊆B

X

i∈S
wi:

( )

Theorem 1. For agents with SOS valuations and for every downward-closed feasibility constraint I , RS-V is an ex post 
IC-IR mechanism that gives four approximation to the optimal welfare. For d-SOS valuations, the mechanism gives a 2(d+
1) approximation to the optimal welfare.

Proof. We first show the allocation is monotone in one’s signal, and hence, by Proposition 1, the mechanism is ex 
post IC-IR. Fix a random partition (A, B). 
• Agents in A are never allocated anything, and thus, their allocation is weakly monotone in their signal.
• For an agent i ∈ B, increasing s̃i can only increase wi, whereas it leaves wj unchanged for all j ∈ B \ {i}. Thus, 

this only increases the weight of feasible sets (subsets of B in I ) that i belongs to. Therefore, increasing si can only 
cause i to go from being unallocated to being allocated.

For approximation, consider a set S∗ ∈ arg maxS∈I
P

i∈Svi(s) that maximizes social welfare. For every i ∈ S∗, 
from Lemma 2, we have that

EB[wi · 1i∈B] � EB[vi(si, sA, 0B�i) | i ∈ B] ·Pr(i ∈ B) ≥ vi(s)
d+ 1 ·

1
2 : (4) 

For every set B, the fact that I is downward closed implies that S∗ ∩ B ∈ I . Therefore, S∗ ∩ B is eligible to be 
selected by RS-V as the allocated set of bidders. We have that the values of the bidders we allocate to are at least

EB

"

max
S∈I :S⊆B

X

i∈S
wi

#

≥ EB

"
X

i∈S∗∩B
wi

#

� EB

"
X

i∈S∗
wi · 1i∈B

#

�
X

i∈S∗
EB[wi · 1i∈B] ≥

X

i∈S∗

vi(s)
2(d+ 1), 

as desired. Because the allocated bidders’ true values at s are only higher than the proxy values wi, this continues 
to hold. w

We note that for the case of downward-closed feasibility constraints, even if the valuations satisfy single crossing, 
there can be an n� 1 gap between the optimal welfare and the welfare that the best deterministic mechanism can get. 
This is stated in Proposition B.1 in Appendix B.
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The following lower bounds (Theorem 2) show that even for a single-item setting, one cannot hope to get a better 
approximation than two and Ω(

ffiffiffi
d
√
) for SOS and d-SOS valuations, respectively. These lower bounds apply to arbitrary 

randomized mechanisms.

Theorem 2. No ex post IC-IR mechanism for selling a single item can get a better approximation than 
a. a factor of two for SOS valuations and
b. a factor of Ω(

ffiffiffi
d
√
) for d-SOS valuations.

Proof. Let xi(s) be the probability agent i is allocated at signal profile s. Notice that for every s, 
P

ixi(s) ≤ 1; other
wise, the allocation rule is not feasible. 

a. Consider the case where there are two agents, 1 and 2, s1 ∈ {0, 1}, and agent 2 has no signal. The valuations are 
v1(0) � 1, v1(1) � 1+ ɛ, v2(0) � 0 and v2(1) �H for H≫ 1≫ ɛ. It is easy to see the valuations are SOS. 
In order to get better than a two approximation at s1 � 0, we must have x1(0) > 1=2. By monotonicity, this forces 
x1(1) > 1=2 as well, and hence, x2(1) < 1=2 by feasibility. This implies that the expected welfare when s1 � 1 is 
x1(1)v1(1)+ x2(1)v2(1) <H=2+ 1, whereas the optimal welfare when s1 � 1 is H. For a large H, this approaches a two 
approximation. Note that this lower bound applies even given a known prior distribution on the signals in the 
event that we have a prior on the signals that satisfies Pr[s1 � 0] · 1 � Pr[s1 � 1] ·H.

b. Assume d ≥ 4; otherwise, (a) gives an Ω(
ffiffiffi
d
√
) lower bound. Consider the case where there are n �

ffiffiffi
d
√

agents 
and si ∈ {0, 1} for every agent i. The valuation of agent i is

vi(s) �

X

j≠i
sj + ɛ · si ∃j ≠ i : sj � 0

d+ ɛ · si sj � 1 ∀j ≠ i,

8
<

:

where ɛ→ 0.
To see that the valuations are d-SOS, notice that whenever a signal sj changes from zero to one, the valuation 

of agent i ≠ j increases by one unless all other signals beside i’s are already set to one, in which case the valuation 
increases by d�

ffiffiffi
d
√
+ 2 < d. Consider valuation profiles si � (0i, 1�i). Note that by monotonicity, for every truthful 

mechanism, it must be the case that xi(si) ≤ xi(1). Because any feasible allocation rule must satisfy 
P ffiffi

d
√

i�1 xi(1) ≤ 1, 
then it must be the case there exists some agent i such that xi(1) ≤ 1=

ffiffiffi
d
√

, which by monotonicity, implies that 
xi(si) ≤ 1=

ffiffiffi
d
√

. However, at profile si, vi(si) � d, whereas vj(si) �
ffiffiffi
d
√
� 2 <

ffiffiffi
d
√

for all j ≠ i; so, we get that the expected 
welfare of the mechanism at si is at most xi(si) · d+ (1� xi(si)) ·

ffiffiffi
d
√
≤ 2

ffiffiffi
d
√

, whereas the optimal welfare is d. Again, 
the lower bound also applies to the setting with known priors on the signals using a prior that satisfies Pr[si] �

Pr[sj] � 1=
ffiffiffi
d
√

for all i and j. w

5. Combinatorial Auctions with Separable Valuations
In this section, we present an ex post IC-IR mechanism that gives 1/4 of the optimal social welfare in any combinatorial 
auction setting with separable SOS valuations (as in Definition 16). Recall that the valuation function of agent i for a 
subset T of items is separable SOS if it can be written as viT(sT) � g�iT(s�iT) + hiT(siT), where g�iT is SOS. The mecha
nism that we call the RS-VCG auction is a natural extension of the RS-V auction presented in Section 4. Note that unlike 
RS-V, here we need to explicitly define payments so that the obtained mechanism is ex post IC-IR. We derive VCG- 
inspired payments, which align the objective of the mechanism with that of the agents. Separability is used here, as 
without it, the payment term would have been affected by the agent’s report (whereas with separability, only the alloca
tion is affected by it).

5.1. RS-VCG
• Agents report their signals s̃.
• Partition the agents into two sets A and B uniformly at random.
• For each agent j ∈ B and bundle T ⊆ [m], let

wjT :� vjT(s̃jT, s̃AT, 0B�jT) � g�jT(s̃AT, 0B�jT) + hjT(s̃jT):

• Let the allocation be

{Ti}i∈B ∈ arg max
{Si}i∈B

X

i∈B
wiSi ;

that is, {Ti}i∈B is the allocation that maximizes the “welfare” using wiT’s.
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• Set the payment for a winning agent i ∈ B receiving a set of goods Ti to be

pi(s̃) :� g�iTi(s̃�iTi)� g�iTi(s̃ATi , 0B�iTi)�
X

j∈B\{i}
wjTj +w�i, 

where

w�i � max
partitions {T′j }

X

j∈B\{i}
wjT′j , 

and that is, w�i is the weight of the best allocation without agent i.
Because the wjT’s do not depend on agent i’s report (because i is in B), w�i does not depend on agent i’s report. There

fore, we can (and will) ignore this term when considering incentive compatibility.
Note also that the maximal partition guarantees that w�i ≥

P
j∈B\{i}wjTj and monotonicity of valuations in signals 

guarantees that g�iTi(s̃�i) ≥ g�iTi(s̃A, 0B�i). Therefore, the payments pi(s̃) are always nonnegative.

Theorem 3. Random sampling VCG is an ex post IC-IR mechanism that gives a four approximation to the optimal social 
welfare for any combinatorial auction setting with separable SOS valuations.

Proof. First, we show that if the agents bid truthfully, then the mechanism gives a four approximation to social 
welfare. For every agent i and bundle T,

EB[wiT · 1i∈B] � EB[viT(siT, sAT, 0B�iT) | i ∈ B] · Pr(i ∈ B) ≥ viT(sT)

2 ·
1
2 , (5) 

where the inequality follows by applying Lemma 2 with d� 1.
Let S∗1, : : : , S∗n be the true welfare-maximizing allocation. Then,

EB max
partitions {Ti}

X

i∈B
wiTi

" #

≥ EB
X

i
wiS∗i · 1i∈B

" #

�
X

i
EB[wiS∗i · 1i∈B] ≥

1
4
X

i
viS∗i (sS∗i ), 

where the last inequality follows by substituting S∗i in T in Equation (5) for every i. Because viT(s) is always at least wiT, 
this proves the approximation ratio.

Next, we show that RS-VCG is universally ex post IC. Fix a random partition (A, B). Suppose that when all 
agents bid truthfully,

{T∗j }j∈B � arg max
partitions {Tj}

X

j∈B
wjTj :

Suppose that all agents but i ∈ B bid truthfully and i bids s′i instead of his true signal vector si. Let {T′j }j∈B be the 
resulting allocation. Therefore, agent i’s utility when reporting s′i (after disregarding the w�i term as mentioned) is

viT′i (s)� pi(s′i , s�i) � g�iT′i (s�iT′i ) + hiT′i (siT′i )� pi(s′i , s�i)

� g�iT′i (s�iT′i ) + hiT′i (siT′i )�

 

g�iT′i (s�iT′i )� g�iT′i (sAT′i , 0B�iT′i )�
X

j∈B\{i}
wjT′j

!

� hiT′i (siT′i ) + g�iT′i (sAT′i , 0B�iT′i ) +
X

j∈B\{i}
wjT′j

� wiT′i +
X

j∈B\{i}
wjT′j �

X

j∈B
wjT′j

≤
X

j∈B
wjT∗j , 

where 
P

j∈BwjT∗j is i’s utility for bidding truthfully.
Finally, we show that the mechanism is ex post IR. Indeed, agent i’s utility when reporting truthfully (and 

without disregarding the w�i term) is

viT∗i (sT∗i )� pi(s) �
X

j∈B
wjT∗j �w�i �

X

j∈B
wjT∗j � max

partitions {T′j }

X

j∈B\{i}
wjT′j ≥ 0: w 
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In the case of separable d-SOS valuations, the random sampling VCG is an ex post IC-IR mechanism that gives 2(d+ 1)
approximation to the social welfare. The proof is identical to Theorem 3, except that Equation (5) is changed to

EB[wiT · 1i∈B] ≥
viT(sT)

2(d+ 1)

because we apply Lemma 2 with an arbitrary d.

Remark 1. Theorem 3 is clearly analogous to the VCG mechanism for combinatorial auctions with private values. 
As with VCG for private values, in many cases, there is unlikely to be a polynomial time algorithm to compute 
allocations and payments. Exceptions include settings we know and love such as unit-demand auctions, additive 
valuations, etc.

6. Combinatorial Auctions with Single-Dimensional Signals
In this section, we consider combinatorial valuations (general combinatorial auctions) with single-dimensional signals 
(as given by Definition 9).

When the signal space of each agent is of size at most k, we present a mechanism that gets (k+ 3) approximation for 
SOS valuations (see Section 6.1) and a mechanism that gets (2 log2 k+ 4) approximation for strong-SOS valuations (Def
inition 14; see Section 6.2 for details regarding the mechanism). For d-SOS and d-strong-SOS valuations, the mechanism 
generalizes to give O(dk) and O(d2 log k) approximations, respectively, as shown in Appendix C.

We first decompose the optimal welfare into two parts, OTHER and SELF. Each part will be covered by a corre
sponding mechanism. Let T∗ � {T∗i }i∈[n] be a welfare-maximizing allocation at signal profile s, and let W∗(s) be the social 
welfare of T∗ at s. Consider the following decomposition:

W∗(s) �
X

i
viT∗i (s)

�
X

i
viT∗i (s�i, 0i) +

X

i : si>0
(viT∗i (s)� viT∗i (s�i, 0i))

≤
X

i
viT∗i (s�i, 0i) +

X

i : si>0
(viT∗i (0�i, si)� viT∗i (0)) (6) 

≤
X

i
viT∗i (s�i, 0i)

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
OTHER

+
Xk�1

ℓ�1

X

i : si�ℓ

viT∗i (0�i, si)

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
SELF

, (7) 

where Equation (6) follows from the definition of submodularity (and therefore, also follows the definition of strong 
submodularity). The last inequality follows from the nonnegativity of viT∗i (0). The first term in the decomposition 
represents the contribution of others’ signals to one’s value from his allocated bundle, whereas the second term 
represents one’s contribution to his own value. Each of these terms will be targeted using a different mechanism. 
Whereas the OTHER term will be targeted using the same mechanism in both the SOS and strong-SOS cases, the 
SELF term will be treated differently.

6.1. (k13) Approximation for SOS Valuations
Suppose si ∈ {0, 1, : : : , k� 1} for all i. The mechanism is as follows. 

Mechanism k signals high-low (k-HL).
With probability pRT � (k� 1=k+ 3), run random threshold; otherwise, run random sampling, as described.

6.1.1. Mechanism Random Threshold. 
• Choose a random threshold ℓ uniformly in {1, : : : , k� 1}.
• Let N≥ℓ � {i : si ≥ ℓ} be the “high” agents (i.e., agents with signal at least ℓ), and let N<ℓ � [n] \N≥ℓ be the 

“low” agents.
• For every high agent i ∈N≥ℓ and bundle T, let viT :� viT(sN<ℓ ,ℓN≥ℓ ).
• For every low agent i ∈N<ℓ and bundle T, let viT :� 0.
• Let the allocation be

T ∈ arg max
S�{Si}i∈N≥ℓ

X

i∈N≥ℓ

viSi :

(That is, the allocation maximizes the “welfare” of high agents using values viT.)
• Agent i that receives bundle Ti pays viTi

(s�i, si � ℓ� 1).
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6.1.2. Mechanism Random Sampling. 
• Split the agents into sets A and B uniformly at random.
• For each i ∈ B and bundle T, let ṽiT :� viT(sA, 0B).
• For each i ∈ A and bundle T, let ṽiT :� 0.
• Let the allocation be

T̃ ∈ arg max
S�{Si}i∈B

X

i∈B
ṽiSi :

(That is, the allocation maximizes the “welfare” of agents in B using values ṽiT.)
• Charge no payments.
The k-HL mechanism is a random combination of two mechanisms. Random threshold approximates the welfare 

contribution of the bidders’ signals to their own value (the SELF term); random sampling approximates the welfare 
contributions of the bidders’ signals to other bidders’ values (the OTHER term). We wish to prove the follow
ing theorem.

Theorem 4. For every combinatorial auction setting with SOS valuations, single-dimensional signals, and signal space of 
size k (i.e., si ∈ {0, 1, : : : , k� 1} ∀i), mechanism k-HL is an ex post IC-IR mechanism that gives (k+ 3) approximation to 
the optimal social welfare.

We first argue that the mechanism is ex post IC-IR.

Proof of Ex Post IC-IR. Random sampling is ex post IC-IR because the agents that might receive items (agents in 
B) cannot change the allocation because their signals are ignored (and they pay nothing).

As for random threshold, consider a threshold ℓ chosen by the mechanism. If the agent’s signal is below ℓ 
and the agent reports ℓ or above, then his payment if allocated bundle T is viT(s�i, si � ℓ� 1) ≥ viT(s) (i.e., the 
agent’s utility is nonpositive). Bidding a different value below ℓ will grant the agent no items. If his value is ℓ or 
above, then bidding a different signal above ℓ will result in the same outcome because the sets N≥ℓ and N<ℓ 

remain the same. If he bids a signal below ℓ, then he will not receive any item, and his utility will be zero; how
ever, bidding his true signal will result in nonnegative utility. w

In Lemma 4, we prove that random sampling covers the OTHER component of the social welfare, and in Lemma 
3, we show that random threshold covers the SELF component. w

Lemma 3. For SOS valuations, the random threshold mechanism gives a (k� 1) approximation to the SELF compo
nent of the optimal social welfare.

Proof. Consider a threshold ℓ ∈ {1, : : : , k� 1} chosen in random threshold. Whenever ℓ is chosen, we have that
X

i : si�ℓ

viT∗i �
X

i : si�ℓ

viT∗i (sN<ℓ , ℓN≥ℓ ) ≥
X

i : si�ℓ

viT∗i (0�i, si):

Because random threshold chooses an allocation T � {Ti}i∈N≥ℓ that maximizes the welfare under viT’s, the 
value of the allocation is only larger than the left expression. Because viTi

(s) ≥ viTi
, we get that if ℓ was chosen, 

which happens with probability 1=k� 1, the welfare achieved is at least 
P

i : si�ℓ
viT∗i (0�i, si): Therefore, the welfare 

from running random threshold is at least
Xk�1

ℓ�1

1
k� 1

X

i : si�ℓ

viT∗i (0�i, si) ≥
SELF

k� 1 : w

Lemma 4. For SOS valuations, the random sampling mechanism gives a four approximation to the OTHER component 
of the optimal social welfare.

Proof. Consider a set T. Using an application of the key Lemma 2 with respect to viT(s�i, 0i), we see that

EA, B[ṽiT] ≥ Pr[i ∈ B] ·EA, B[ṽiT | i ∈ B] � 1
2EA, B\i[ṽiT | i ∈ B] ≥ 1

4 viT(s�i, 0i): (8) 

Therefore, the expected weight of the allocation {T∗i }i∈[n] using weights ṽiT’s is

EA, B
X

i
ṽiT∗i

" #

�
X

i
EA, B[ṽiT∗i ] ≥

X

i

1
4viT∗i (s�i, 0i) �

OTHER

4 :
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Because the mechanism chooses the optimal allocation according to the ṽiT’s, its weight can only be larger. More
over, because ṽiT � viT(s�i, 0) ≤ viT(s), the welfare achieved by the mechanism is at least OTHER=4, as desired. w

We conclude by proving the claimed approximation ratio.

Proof of Approximation. According to Lemma 3, random threshold approximates SELF to a factor of k�1. 
According to Lemma 4, random sampling approximates OTHER to a factor of four. Therefore, running random 

threshold with probability pRT and random sampling with probability 1� pRT yields a welfare of

pRT
SELF

k� 1 + (1� pRT)
OTHER

4 �
k� 1
k+ 3 ·

SELF

k� 1 +
4

k+ 3 ·
OTHER

4

�
SELF+OTHER

k+ 3 ≥
W∗(s)
k+ 3 , 

where the inequality follows Equation (7). w

6.2. O(log k) Approximation with Strong-SOS Valuations
Strong-SOS valuations mean the effect on the valuation is concave in one’s own signal. This allows us to use a bucketing 
technique in order to give an O(log k) approximation to the SELF component in the decomposition depicted by Equa
tion (7).

Consider the SELF term in Equation (7). We can bound this term as follows:

SELF �
Xk�1

ℓ�1

X

i : si�ℓ

viT∗i (0�i, si)

�
Xlog2 k

ℓ�1

X

i : 2ℓ�1≤si<2ℓ
viT∗i (0�i, si)

≤ 2
Xlog2 k

ℓ�1

X

i : 2ℓ�1≤si<2ℓ
viT∗i (0�i, 2ℓ�1

i), (9) 

where the inequality follows the definition of strong-SOS valuations.
We introduce mechanism random bucket to give an O(log k) approximation to the upper bound in Equation (9).

6.2.1. Mechanism Random Bucket. 
• Choose ℓ uniformly in {1, : : : , log2 k}.
• Let NBℓ � {i : such that si ≥ 2ℓ�1} be the agents with signal at least 2ℓ�1 and N¬Bℓ � [n] \NBℓ .
• For i ∈NBℓ and bundle T, let viT :� viT(sN¬Bℓ

, 2ℓ�1
NBℓ
) (and viT :� 0 for i ∈N¬Bℓ ).

• Let the allocation be

T ∈ arg max
S�{Si}i∈NBℓ

X

i∈NBℓ

viSi :

(That is, the allocation maximizes the “welfare” of high agents using values viT.)
• Agent i that receives bundle Ti pays viTi

(s�i, si � 2ℓ�1� 1).
We show the following approximation guarantee regarding random bucket.

Lemma 5. For strong-SOS valuations, the random bucket mechanism is ex post IC-IR and gives a 2 log2k approxima
tion to the SELF component of the optimal social welfare.

Proof. The proof of ex post IC-IR is identical to that of mechanism random threshold, as both are threshold- 
based mechanisms. The proof of the approximation guarantee is also very similar to that of random threshold.

Consider a threshold 2ℓ�1 for ℓ ∈ {1, : : : , k� 1} chosen in random bucket. Whenever ℓ is chosen, we have that
X

i : 2ℓ�1≤si<2ℓ
viT∗i �

X

i : 2ℓ�1≤si<2ℓ
viT∗i (sN¬Bℓ

, 2ℓ�1
NBℓ
) ≥

X

i : 2ℓ�1≤si<2ℓ
viT∗i (0�i, 2ℓ�1

i):
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Because random bucket chooses an allocation that maximizes the viT’s, the value of the allocation is only larger. 
Because viTi

(s) ≥ viTi
, we get that if ℓ was chosen, which happens with probability 1=log2 k, the welfare achieved 

is at least 
P

i : 2ℓ�1≤si<2ℓviT∗i (0�i, 2ℓ�1
i): Therefore, the welfare from running random bucket is at least

Xlog2 k

ℓ�1

1
log2 k

X

i : 2ℓ�1≤si<2ℓ
viT∗i (0�i, 2ℓ�1

i) ≥
SELF

2 log2 k
:

w

Mechanism k-signals strong submodular over signals (k-SS) runs random bucket with probability pRB �
log2k

log2k+2 and mechanism random sampling with probability 1� pRB.

Theorem 5. For every combinatorial auction with single-dimensional signals with strong-SOS valuations and signal space 
of size k (i.e., si ∈ {0, 1, : : : , k� 1} ∀i), mechanism k-SS is ex post IC-IR and gives (2 log2 k+ 4) approximation to the opti
mal social welfare.

Proof. We already established that both random bucket and random sampling are ex post IC-IR; hence, k-SS 

is ex post IC-IR as well. As for the approximation, according to Lemma 5, with probability pRB we get 2 log2 k 
approximation to SELF, and according to Lemma 4, with probability 1� pRB, we get a four approximation to 
OTHER. Overall, the expected welfare is at least

pRB
SELF

2 log2 k
+ (1� pRB)

OTHER

4 �
SELF+OTHER

2 log2 k+ 4

≥
W∗

2 log2 k+ 4 , 

as desired. w

7. Open Problems
Our analysis and results suggest many open problems. 
• For combinatorial auctions with multidimensional signals, is separability a necessary condition for achieving 

constant approximation to welfare? This problem is open even for single-dimensional signals and even for “simple” 
combinatorial valuations, such as unit demand.
• For single-parameter SOS valuations, downward-closed feasibility, and single-dimensional signals, closing the 

gap between 1/4 and 1/2 is open. We note that recently Amer and Talgam-Cohen [2] showed that 1/2 is the correct 
answer for binary signals and matroid feasibility constraints.
• The exact same gap applies for combinatorial separable-SOS valuations with multidimensional signals.
• How does the distinction between SOS and strong SOS affect the problems above, if at all?
• When considering the relaxation of SOS valuations to d-SOS valuations, there is a gap between the positive 

and negative results with respect to the dependence on d.
More generally, what other classes of valuations give rise to approximately efficient mechanisms in settings with inter
dependent valuations?

Appendix A. Unit-Demand Valuations with Single Crossing
Even though single crossing is a strong-enough condition to implement the fully efficient mechanism in a variety of single- 
parameter environments, generalizations of this condition fail even in the simplest multiparameter environments. We consider the 
case where bidders are unit demand and each bidder has a scalar as a signal. We define single crossing for this setting as follows.

Definition A.1 (Single Crossing for Unit-Demand Valuations). A valuation profile v is said to be single crossing if for every 
agent i, signals s�i, item j, and agent ℓ,

∂

∂si
vij(s�i, si) ≥

∂

∂si
vℓj(s�i, si): (A.1) 

In this section, we show that in the case two nonidentical items are for sale and the valuations are unit demand and satisfy 
single crossing as defined in Equation (A.1), any truthful mechanism is bounded away from achieving full efficiency.

In order to give the lower bound, we first give a characterization of ex post IC and IR mechanisms in multidimensional 
environments in interdependent values settings (Appendix A.1). We then turn to prove the lower bound (Appendix A.2).
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A.1. Cycle Monotonicity
In the IPV model, Rochet [35] introduced cycle monotonicity as a necessary and sufficient condition on the allocation to be 
implementable in dominant strategies (DSIC) for multidimensional environments. It was noticed that a straightforward ana
logue holds for the IDV value model for ex post implementability (EPIC) (in Vohra [41], this fact is stated without a proof). 

Fix a feasible allocation rule x � {xi}i∈[n], where xiT(s) is the probability agent i receives a bundle T under bid profile s. For 
each agent i, consider the graph Gx

i , where there is a vertex for each signal profile s and there is a directed edge from s to t 
if s�i � t�i. The weight of edge (s, t) is

w(s, t) � ET~xi(s)[viT(s)]�ET~xi(t)[viT(s)] �
X

T⊆[m]
xiT(s)viT(s)�

X

T⊆[m]
xiT(t)viT(s):

The following theorem states that a necessary and sufficient condition for ex post implementability of x is that for every 
agent i, every directed cycle in Gx

i is nonnegative. The proof is a straightforward adjustment of the original proof in Rochet 
[35] and is given for completeness.

Theorem A.1. The allocation rule x is implementable by an ex post IC mechanism if and only if for every agent i, all directed cycles in 
Gx

i have nonnegative weight.

Proof. We first show that if the allocation rule is implementable, then there are no negative cycles. Fix some payment rule 
p � {pi}i∈[n], where pi(s) is the payment of agent i under bid profile s. Let s�i be the real signals of all bidders except i, and 
consider a cycle s1→ s2→ : : : → sℓ→ s1 in Gx

i , where st � (s�i, si � ζt) for t ∈ [ℓ]. Because (x, p) is an ex post IC mechanism, 
for every true signal si� s, agent i is at least as well off bidding s than any other bid s′. We get that

ET~xi(s1)[viT(s1)]� pi(s1) ≥ ET~xi(s2)[viT(s1)]� pi(s2)
⋮

ET~xi(sℓ�1)[viT(sℓ�1)]� pi(sℓ�1) ≥ ET~xi(sℓ)[viT(sℓ�1)]� pi(sℓ)
ET~xi(sℓ)[viT(sℓ)]� pi(sℓ) ≥ ET~xi(s1)[viT(sℓ)]� pi(s1):

Summing over the inequalities and using the convention that ℓ+ 1 � 1, we get that

Xℓ

j�1
ET~xi(sj)[viT(sj)]�

Xℓ

j�1
pi(s j) ≥

Xℓ

j�1
ET~xi(sj+1)[viT(sj)]�

Xℓ

j�1
pi(s j)

�
Xℓ

j�1
(ET~xi(s j)[viT(s j)]�ET~xi(sj+1)[viT(s j)]) ≥ 0, 

where the left hand side of the last inequality is exactly the weight of the cycle.
We now show how to compute payments that implement a given allocation rule x that induces no negative cycles for any 

i and Gx
i . Given Gx

i , one can compute payments as follows. 
• Add a dummy node d with edges of weight zero to all nodes in Gx

i .
• For every node s of Gx

i , let δ(s) be the distance of the shortest path from d to s.
• Set pi(s) ��δ(s).
Fix signals of the other players s�i. Let s be player i’s true signal and s′ be some other possible signal for i. Denote s �
(s�i, s) and s′ � (s�i, s′). Consider the nodes s and s′ in Gx

i . Because δ(s′) is the length of the shortest path from d, it must be 
that

δ(s′) ≤ δ(s) +w(s, s′), 

where w(s, s′) is the weight of the edge from s to s′. Substituting w(s, s′) � ET~xi(s)[viT(s)]�ET~xi(s′)[viT(s)], pi(s) ��δ(s), and 
pi(s′) ��δ(s′), we get

ET~xi(s)[viT(s)]� pi(s) ≥ ET~xi(s′)[viT(s)]� pi(s′), 

as desired. w

A.2. Lower Bounds for Deterministic and Randomized Mechanisms

Proposition A.1. There exists a setting with two items and two agents with unit-demand and single-crossing valuations, such that no 
deterministic truthful mechanism achieves more than 1/2 of the optimal welfare.

Proof. Consider the setting depicted in Figure A.1, with two agents, 1 and 2, and two items, a and b. s1 ∈ {0, 1}, and s2 is 
fixed. The values at s1 � 0 are

v1a(0) � 1, v1b(0) � 0, v2a(0) � 0, v1b(0) � 1, 

and at s1 � 1, they are
v1a(1) � 1+H+ ɛ, v1b(1) �H, v2a(1) �H, v1b(1) � 1, 

for some arbitrarily large H and a sufficiently small ɛ. One can easily verify that the valuations satisfy Equation (A.1) and hence, 
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single crossing; indeed, when agent 1’s signal increases, the valuation of agent 1 for each one of the item increases by more than 
the change in agent 2’s valuation.

We show that no deterministic truthful mechanism can get better than two approximation. In order to get better than two 
approximation, the mechanism must allocate item a to agent 1 and item b to bidder 2 at signal s1 � 0. At s1 � 1, allocating 
item b to agent 1 and item a to agent 2 obtains a welfare of 2H, whereas any other allocation obtains at most a welfare of 
H+ 2+ ɛ. Because H can be arbitrarily large, one must allocate item b to agent 1 and item a to agent 2 at signal s1 � 1 in 
order to get an approximation ratio better than two. Consider such an allocation rule x and the graph Gx

1. This graph has 
one cycle, with one edge from s1 � 0 to s1 � 1 and one edge from s1 � 1 to s1 � 0. The weight of this cycle is

(v1a(0)� v1b(0)) + (v1b(1)� v1a(1)) � (1� 0) + (H� (H+ 1+ ɛ)) ��ɛ < 0:

Based on Theorem A.1, this implies that this allocation rule is not implementable. w

Proposition A.2. There exists a setting with two items and two agents with unit-demand and single-crossing valuations, such that no 
randomized truthful mechanism achieves more than 

ffiffiffi
2
√
+ 2=4 of the optimal welfare.

Proof. Consider the setting depicted in Figure A.2, with two agents, 1 and 2, and two items, a and b. s1 ∈ {0, 1}, and 
s2 ∈ {0, 1}. The values are

v1a(0, 0) � 1, v1b(0, 0) � 0, v2a(0, 0) � 0, v1b(0, 0) � 1,
v1a(1, 0) � 1+

ffiffiffi
2
√

H, v1b(1, 0) �H, v2a(1, 0) �H, v1b(1, 0) � 1,
v1a(0, 1) � 1, v1b(0, 1) �H, v2a(0, 1) �H, v2b(0, 1) � 1+

ffiffiffi
2
√

H,
v1a(1, 1) � 1+

ffiffiffi
2
√

H, v1b(1, 1) �H, v2a(1, 1) �H, v2b(1, 1) � 1+
ffiffiffi
2
√

H, 

for an arbitrarily large H. One can easily verify that the valuations are single crossing. We claim that the following equalities hold 
with respect to the allocation rule of the optimal randomized mechanism. 

a. For every s1, s2, x1a(s1, s2) � x2b(s2, s1) and x2a(s1, s2) � x1b(s2, s1).
b. For some q ∈ [0, 1], x1a(0, 0) � x2b(0, 0) � q and x1∅(0, 0) � x2∅(0, 0) � 1� q.
c. For some p ∈ [0, 1], x1a(0, 1) � p and x1b(0, 1) � 1� p.
We next prove the equalities. 
a. Consider some implementable allocation rule x, and consider the allocation rule x̃ where x̃1a(s1, s2) � x2b(s2, s1) and 

x̃2a(s1, s2) � x1b(s2, s1) for every s1, s2. Note that the valuations are symmetric (i.e., the role of item a (b) for agent 1 is the same as 
the role of items b (a) for agent 2). By symmetry, x is implementable if and only if x̃ is implementable, and both allocation rules 
have the same approximation guarantee. Clearly, an allocation rule x that applies allocation rules x and x̃, with probability 1

2 
each, maintains the same approximation guarantee. Moreover, this allocation rule satisfies the desired property.

b. The optimal mechanism gains nothing from assigning any positive probability for allocating item b to agent 1 under signal 
profile (0, 0). This is because item b grants no value to agent 1, and in terms of incentives, it can only incentivize agent 1 to misre
port his signal at signal profile (1, 0). Analogously, the optimal mechanism gains nothing from assigning any positive probabil
ity for allocating item a to agent 2 under signal profile (0, 0). By (a), x1a(0, 0) � x2b(0, 0) � q for some q ∈ [0, 1]. To conclude the 
proof of (b), note that the only other feasible set for the agents is the empty set (otherwise, agent 1 has some probability to get 
item b, and agent 2 has some probability to get item a).

c. Consider Gx
1 and the cycle C � (0, 0) → (1, 0) → (0, 0) in Gx

1. This is the only cycle that contains the node (1, 0) in Gx
1. 

Assume x1∅(1, 0) > 0.
d. Transferring z ∈ (0, 1] probability from x1∅(1, 0) to x1a(1, 0) decreases the weight of the edge (0, 0) → (1, 0) by z and increases 

the weight of the edge (1, 0) → (0, 0) by z(1+
ffiffiffi
2
√

H) > z. Therefore, its net effect on the weight of C is positive. Transferring z ∈
(0, 1] probability from x1∅(1, 0) to x1b(1, 0) does not affect the weight of the edge (0, 0) → (1, 0) and increases the weight of the 
edge (1, 0) → (0, 0) by zH. Therefore, its net effect on the weight of C is positive. Because transferring x1∅(1, 0) to x1a(1, 0) and 

Figure A.1. An instance with unit-demand single-crossing valuations where no deterministic truthful allocation achieves more 
than a half of the optimal welfare. 
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x1b(1, 0) increases welfare and does not violate cycle monotonicity, the optimal mechanism clearly assigns no probability 
to x1∅(1, 0).

Now, assume x1{a, b}(1, 0) > 0. By moving this probability to x1a(1, 0), we get the same expected welfare at (1,0), and the 
weight of the edges in C does not change. Therefore, we may also assume the mechanism does not assign positive utility 
to x1{a, b}(1, 0).

According to Theorem A.1, in any truthful mechanism, the weight of the cycle C must be nonnegative. This translates to 
the following condition:

(ET~x1(0, 0)[v1T(0, 0)]� ET~x1(1, 0)[v1T(0, 0)])� (ET~x1(1, 0)[v1T(1, 0)]� ET~x1(0, 0)[v1T(1, 0)])
� (q� p) + (p(1 +

ffiffiffi
2
√

H) + (1� p)H � q(1 +
ffiffiffi
2
√

H)) ≥ 0

⇒ q ≤ p(1� 1=
ffiffiffi
2
√
) +

1
ffiffiffi
2
√ :

In the optimal mechanism, q will be as large as possible in order to maximize the expected welfare at signal profile (0, 0). 
Hence, we can assume q � p(1� 1=

ffiffiffi
2
√
) + 1=

ffiffiffi
2
√

. Therefore, the approximation ratio at profile (0, 0) is at most q � p(1� 1=
ffiffiffi
2
√
)+

1=
ffiffiffi
2
√

. At profile (0, 1), if item a is allocated to agent 1 (which happens with probability p), the welfare of the mechanism is 
at most 2+

ffiffiffi
2
√

H, whereas the welfare of the optimal allocation is 2H. As H can be arbitrarily large, this approximation ratio 
tends to 1ffiffi

2
√ . Therefore, the approximation ratio at profile (1,0) is at most pffiffi

2
√ + (1� p) � 1� p(1� 1=

ffiffiffi
2
√
). he optimal mechanism 

would balance between the approximation ratio at (0, 0) and at (1, 0); therefore, it uses p that solves

p 1� 1
ffiffiffi
2
√

� �

+
1
ffiffiffi
2
√ � 1� p 1� 1

ffiffiffi
2
√

� �

:

Solving for p, we get p � 1=2. This leads to an approximation ratio of at most 2+
ffiffi
2
√

4 , as promised. w

Appendix B. n 2 1 Lower Bound for Deterministic Mechanisms with Single-Crossing SOS Valuations
We show that for downward-closed environments, even if valuations satisfy a single-crossing condition and are SOS, any 
deterministic mechanism cannot obtain a better approximation to the optimal welfare than n� 1.

Proposition B.1. There exists a downward-closed environment with valuations that satisfy single crossing for which no deterministic 
mechanism can get a better approximation than n� 1 to the optimal social welfare.

Proof. Consider a set of n bidders, where I � {1} ∪ P({2, : : : , n}) and P({2, : : : , n}) is the power set of the set {2, : : : , n}. Only 
agent 1 has a signal s1 ∈ {0, 1}, and other players do not have signals. The valuations are

v1(0) � 1 v1(1) � 1+H
vi(0) � 0 vi(1) �H ∀i ∈ {2, : : : , n}

for an arbitrary large value H≫ 1. One can easily verify that these valuations satisfy single crossing and SOS.
Any deterministic mechanism that wants to get any approximation to the social welfare must allocate to agent 1 when 

s1 � 0. In addition, if a deterministic mechanism wants to get a better approximation than n�1 to the optimal social welfare, 
agent 1 cannot be allocated when s1 � 1. Otherwise, none of the bidders in {2, : : :n} can get allocated because the only set in 

Figure A.2. An instance with unit-demand single-crossing valuations where no randomized truthful allocation achieves more 
than 

ffiffiffi
2
√
+ 2=4 of the optimal welfare. 
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I that contains agent 1 is the singleton set. Therefore, if agent 1 is allocated at s1 � 1, the achieved welfare is 1+H, whereas 
the optimal welfare is (n� 1) ·H (when serving all agents in {2, : : : , n}). For an arbitrary large H, this ratio approaches n�1.

The proof follows because serving agent 1 at s1 � 0 and not serving agent 1 at s1 � 1 violate monotonicity. w

Remark B.1. The n� 1 factor is tight for single-crossing valuations. If [n] ∈ I , then the mechanism can always allocate all 
agents. Otherwise, one can always allocate only to the highest-valued agent, which is monotone because of single crossing. 
Because the largest feasible set is of size at most n�1 in this case, allocating to the highest-valued agent yields an approxi
mation ratio of n�1.

Proposition B.2. There exists a combinatorial auctions environment with valuations that satisfy single crossing for which no determin
istic mechanism can get a better approximation than n� 1 to the optimal social welfare.

Proof. Consider a set of n bidders and n� 1 items. Only agent n has a binary signal. The valuation function of n for item j is 
vnj(sn) �H · sn and for the set of all n�1 items is v1[n�1](sn) � 1+ (H+ ɛ) · sn. Agent n is unit demand for every strict subset of 
items (that is, their value for a nonempty subset of items T ⊂ [n� 1] is vnT(sn) �H · sn).

Every agent i ≠ n is a single-minded agent, where their value for item i is vii(sn) �H · sn, and for every subset T �= i, viT(sn) � 0. It is 
easy to verify that the valuations satisfy single crossing and submodularity over signals.

Consider first the case where sn� 0. Every deterministic mechanism must allocate all items to agent n because this is the 
only deterministic allocation that has any value. By individual rationality, agent n pays at most one. Now consider the case 
where sn� 1. In this case, we claim that all items should be allocated to agent n when they report bn� 1.

Suppose toward a contradiction that only a strict subset of items T ⊂ [n� 1] is allocated to agent n when they report bn�1. 
In this case, n’s value from the allocation is vnT(1) ≤H, and their utility is at most H as well. Now suppose that they report 
bn�0 instead. In this case, as we claimed, they must be allocated all items and pay at most one. Therefore, their utility is at 
least vn[n�1](1)� 1 �H+ ɛ. Hence, they get a higher utility by misreporting their signal, contradicting truthfulness.

We get that when sn� 1, all items must be allocated to agent 1, achieving welfare H+ 1+ ɛ, whereas an optimal allocation 
allocates item i to agent i, obtaining welfare (n� 1)H. As H grows large, this implies that no EPIC IR mechanism can get a 
better approximation than n�1 to the optimal social welfare. w

Appendix C. Results for d-SOS
We now extend the results in Section 6 to the case of combinatorial d-SOS and combinatorial d-strong-SOS valuations with 
single-dimensional signals. We first note that if we consider d-SOS valuations, then Equation (6) in the decomposition becomes

W∗ ≤
X

i
viT∗i (s�i, 0i) +

X

i : si>0
d · (viT∗i (0�i, si)� viT∗i (0))

≤
X

i
viT∗i (s�i, 0i)

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
OTHER

+
Xk�1

ℓ�1

X

i : si�ℓ

d · viT∗i (0�i, si)

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
SELF

, (C.1) 

and we now show the extension of Theorem 4 to d-SOS valuations.

Theorem C.1. For every combinatorial auction with d-SOS valuations over single-dimensional signals and signal space of size k (i.e., 
si ∈ {0, 1, : : : , k� 1} ∀i), there exists a truthful mechanism that gives d(k+ 1) + 2 approximation to the optimal social welfare.

Proof. The mechanism is identical to k-HL but runs (random threshold) with probability pRT � ((k� 1)d=d(k+ 1)) + 2 and 
(random sampling) with probability 1� pRT. The mechanism was already proved to be truthful in Section 6.1.

Random threshold now gives a d(k� 1) approximation to the new SELF term. The proof is the same as of Lemma 3, 
but the extra factor of d comes from the fact the new SELF term is d times larger.

Random sampling gives a 2(d+ 1) approximation to the OTHER term. Although this term is the same for d-SOS, the 
new factor is because of the fact that when applying Lemma 2 in the proof of Lemma 4, we get that EA, B[ṽiT] ≥ 1=2(d+ 1)
viT(s�i, 0i) instead of the bound that we get in Equation (8).

The approximation for d-SOS valuations follows from the new decomposition, the approximation guarantees the mecha
nisms get for the terms of the decomposition, and the updated probability pRT. w

We next extend Theorem 5.

Theorem C.2. For every combinatorial auction with d-strong-SOS valuations over single-dimensional signals and signal space of size k 
(i.e., si ∈ {0, 1, : : : , k� 1} ∀i), there exists a truthful mechanism that gives (d(d+ 1)log2 k+ 2(d+ 1)) approximation to the optimal 
social welfare.

Proof. The mechanism is identical to mechanism k-SS from Section 6.2 but runs random bucket with probability pRB �

(d log2 k)=(d log2 k+ 2) and (random sampling) with probability 1� pRB.
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The SELF term from Equation (9) is now bounded via the following:

SELF �
Xk�1

ℓ�1

X

i : si�ℓ

d · viT∗i (0�i, si)

�
Xlog2 k

ℓ�1

X

i : 2ℓ�1≤si<2ℓ
d · viT∗i (0�i, si)

≤
Xlog2 k

ℓ�1

X

i : 2ℓ�1≤si<2ℓ
d(d + 1) · viT∗i (0�i, 2ℓ�1

i), (C.2) 

where the inequality follows the definition of d-strong-SOS valuations.
The new bound changes the guarantee of random bucket to get a d(d+ 1)log2k approximation to the SELF term, where 

the proof is identical to that of Lemma 5.
As stated in Theorem C.1, random sampling approximates the OTHER term to a factor 2(d+ 1). The proof of the new 

bound follows the new decomposition, the updated probabilities, and the new approximation guarantees of the mechanisms 
being run. w
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