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Abstract
A major problem in fair division is how to allocate a set
of indivisible resources among agents fairly and efficiently.
The goal of this work is to characterize the tradeoffs between
two well-studied measures of fairness and efficiency — envy
freeness up to any item (EFX) for fairness, and Nash wel-
fare for efficiency — by saying, for given constants α and
β, whether there exists an α-EFX allocation that guarantees
a β-fraction of the maximum Nash welfare (β-MNW). For
additive valuations, we show that for any α ∈ [0, 1], there
exists a partial allocation that is α-EFX and 1

α+1
-MNW. This

tradeoff turns out to be tight (for every α) as demonstrated
by an impossibility result that we give. We also show that for
α ∈ [0, φ−1 ≈ 0.618] these partial allocations can be turned
into complete allocations where all items are assigned. Fur-
thermore, for any α ∈ [0, 1/2], we show that the tight tradeoff
of α-EFX and 1

α+1
-MNW with complete allocations holds

for the more general setting of subadditive valuations. Our
results improve upon the current state of the art, for both ad-
ditive and subadditive valuations, and match the best-known
approximations of EFX under complete allocations, regard-
less of Nash welfare guarantees. Notably, our constructions
for additive valuations also provide EF1 and constant approx-
imations for maximin share guarantees.

Introduction
A common resource allocation setting has m indivisible
goods and n agents with (possibly different) preferences
over bundles of goods. One of the biggest questions in such
scenarios, dating back to Steinhaus (1948), is how to allocate
goods fairly among agents, given their preferences. Another
central goal is to divide the items efficiently so that the col-
lective welfare of the agents, represented by some efficiency
measure, is maximized. There is an extensive line of work
on providing allocations that achieve both criteria simultane-
ously, e.g., (Caragiannis et al. 2009; Bertsimas, Farias, and
Trichakis 2011; Bei et al. 2019).

The aim of this paper is to analyze the tradeoffs between
fairness and efficiency for two standard notions, namely
EFX for fairness and Nash welfare for efficiency. Previous
work has discovered partial results for this problem (Cara-
giannis, Gravin, and Huang 2019; Garg et al. 2023). In this
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work, we provide a complete characterization of this tradeoff
when agents have additive valuations and a partial character-
ization for the more general case of subadditive valuations.

Resource allocation problems. A resource allocation
problem is given by a set of m indivisible goods, a set of n
agents, and a valuation function vi : 2

[m] → R≥0 for every
agent i, which assigns a value vi(S) to every bundle of goods
S ⊆ [m]. The most common type of valuation functions are
additive valuations, where there exist values vig such that
vi(S) =

∑
g∈S vig for every bundle S and agent i. We also

consider the widely studied class of subadditive valuations,
where vi(S∪T ) ≤ vi(S)+vi(T ) for every S, T ⊆ [m]. Sub-
additive valuations constitute the frontier of complement-
free valuations (Lehmann, Lehmann, and Nisan 2006).

An allocation of m goods amongst n agents is given by
a collection X = (X1, . . . , Xn) where the sets Xi and Xj

are disjoint for every pair of distinct agents i and j. The
set Xi represents the set of goods allocated to agent i. An
allocation is said to be complete if

⋃
i Xi = [m], and partial

if some items might be unallocated. In resource allocation
problems, one is typically interested in complete allocations,
but in some contexts, including in the context of this paper,
it also makes sense to consider partial allocations.

Fairness notions. The problem of finding allocations that
are fair is called fair division. Many different definitions of
fairness have been proposed in the fair division domain, see
(Amanatidis et al. 2022) for a survey. One of the most com-
pelling of those notions is that of envy-freeness, introduced
by Foley (1966). An allocation X = (X1, . . . , Xn) is envy-
free (EF) if for every pair of agents i and j, it holds that
vi(Xi) ≥ vi(Xj), namely, every agent (weakly) prefers her
own allocation over that of any other agent. In the context
of envy-freeness, it is usually required that the allocations
are complete. Indeed, without this constraint, every instance
vacuously admits an EF allocation, namely one where no
item is allocated.

A major weakness of EF is that even the simplest set-
tings may not admit complete EF allocations. For example,
if there is a single good and two agents with value 1 for
this good, then in any complete allocation, only one of the
agents gets the single good and the other agent is envious.

Consequently, various relaxations of EF have been intro-
duced. One such relaxation is envy-freeness up to one item
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(EF1), defined by Budish (2011). An allocation X is EF1 if
for every pair of agents i and j, there exists an item g ∈ Xj ,
such that vi(Xi) ≥ vi(Xj − g), namely, agent i does not
envy agent j after removing some item from j’s bundle. Us-
ing a well-known technique of eliminating envy cycles, it is
not too difficult to show that a complete EF1 allocation al-
ways exists (Lipton et al. 2004). For concreteness, consider
the following example.

Example 1. Consider a setting with three items, {a, b, c},
and two agents with identical additive valuations, where
v(a) = v(b) = 1 and v(c) = 2.

In Example 1, the allocation X1 = {a} and X2 = {b, c} is
EF1. Indeed, after removing c from X2, agent 1 has no envy
towards agent 2.

A stronger notion than EF1 is envy freeness up to any
item (EFX), introduced by Caragiannis et al. (2016). An al-
location X is EFX if for every pair of agents i and j, and
every item g ∈ Xj , it holds that vi(Xi) ≥ vi(Xj − g). This
is a stronger condition than EF1 since the requirement for
no envy applies to the removal of any item from j’s bundle.
For instance, in Example 1, the allocation X1 = {a} and
X2 = {b, c} is not EFX, since after removing b from X2,
agent 1 still envies agent 2.

Unfortunately, complete EFX allocations are not known
to exist even for additive valuations, except in several spe-
cial cases such as identical valuations (Plaut and Roughgar-
den 2018), identical items (Lipton et al. 2004), or the case
of three agents (Chaudhury, Garg, and Mehlhorn 2020). Ar-
guably, the existence of EFX allocations is the most enig-
matic problem in fair division (Procaccia 2020).

A natural step to approach the existence of EFX alloca-
tions is to consider the approximate notion of α-EFX, de-
fined by Plaut and Roughgarden (2018). An allocation X
is α-EFX, for some α ∈ [0, 1], if for every pair of agents
i and j, and every item g ∈ Xj , it holds that vi(Xi) ≥
α ·vi(Xj−g). The existence of α-EFX allocations has been
studied for several classes of valuations. In particular, previ-
ous work has established (i) the existence of (φ − 1)-EFX
allocations for additive valuations, where φ ≈ 1.618 is the
golden ratio (Amanatidis, Markakis, and Ntokos 2020), and
(ii) the existence of 1/2-EFX allocations for subadditive val-
uations (Plaut and Roughgarden 2018).

Efficiency notions. Common measures that capture the
efficiency of an allocation are: (i) social welfare — the sum
of agent values, SW(X) =

∑
i∈[n] vi(Xi), and (ii) Nash

welfare — the geometric mean of agent values, NW(X) =∏
i∈[n] vi(Xi)

1/n. In this paper, as in many previous studies,
we consider the Nash welfare notion.

The most important property of the Nash welfare is that it
encourages more balanced allocations relative to social wel-
fare. For example, consider a setting with two agents and
two items, where every agent values every item at 1. The
unique maximum Nash welfare (MNW) allocation is the one
that allocates one item per agent. In terms of social welfare,
however, every allocation is equally good, including one that
gives two items to one of the agents and none to the other,
as all complete allocations have social welfare of 2.

Remarkably, under additive valuations, every allocation
that maximizes Nash welfare is EF1 (Caragiannis et al.
2016). In fact, maximizing Nash welfare is the only welfarist
rule satisfying EF1 (Yuen and Suksompong 2023). Similar
results have been shown for other valuation classes: every al-
location that maximizes Nash welfare is 1/4-EF1 when the
valuations are subadditive (Wu, Li, and Gan 2021), and it is
EFX when the valuations are additive and bi-valued (Ama-
natidis et al. 2020), or when they are submodular and di-
chotomous (Babaioff, Ezra, and Feige 2021).

An allocation X is said to be β-max Nash welfare (β-
MNW) if the Nash welfare of X is at least a β fraction of
the maximum Nash welfare.

Fairness vs efficiency trade-off. A natural question is
whether fairness and efficiency can be achieved simultane-
ously. Bei et al. (2019) studied this question with respect
to the efficiency measure of the social welfare for instances
with additive valuations. Specifically, they provided bounds
for the “price of fairness” with respect to several fairness
notions; namely, the fraction of the maximum social welfare
that can be achieved, when constrained by the corresponding
fairness condition.

They showed that the price of fairness of EFX is Ω(
√
n),

i.e., there are instances with additive valuations in which
no EFX allocation can achieve more than a O(1/

√
n) frac-

tion of the optimal social welfare. On the other hand, it is
possible to find (partial) EFX allocations that obtain a con-
stant fraction of the maximum Nash welfare (Caragiannis,
Gravin, and Huang 2019). This motivates the study of op-
timal tradeoffs between α-EFX and β-MNW, which is the
focus of this paper.

Notably, the original motivation for considering α-EFX
has been the embarrassment around the EFX existence prob-
lem, and the original motivation for considering β-MNW
has been the NP-hardness of maximizing Nash welfare
(Ramezani and Endriss 2009; Nguyen, Roos, and Rothe
2012). As it turns out, an equally important motivation for
studying approximate notions of EFX and MNW is the fact
that one may come at the expense of another. Thus, under-
standing the tradeoffs between these fairness and efficiency
measures is crucial when designing a resource allocation
scheme.

Prior to our work, the following tradeoffs (demonstrated
in Figure 1) have been known: (i) instances with addi-
tive valuations admit a partial EFX allocation that is 1/2-
MNW (Caragiannis, Gravin, and Huang 2019), (ii) instances
with additive valuations admit a complete allocation that is
(φ − 1)-EFX (with no Nash welfare guarantees) (Amana-
tidis, Markakis, and Ntokos 2020), and (iii) instances with
subadditive valuations admit a complete allocation that is
1/2-EFX and 1/2-MNW (Garg et al. 2023).

As described in the next section, we extend these results
to give a more complete picture of the optimal tradeoffs be-
tween α-EFX and β-MNW.

Our Results
In this paper we provide results on the optimal trade-offs be-
tween approximate EFX and approximate maximum Nash
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(Caragiannis et al. 2019)

(Amanatidis et al. 2020)
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Figure 1: Trade-off between the existence of α-EFX and β-MNW allocations, for additive (left) and subadditive (right) val-
uations. Previous positive results are represented by dots (complete dots for complete allocations, and hollow dots for partial
allocations). Dots that lie on the curves belong to the regions of positive results. All positive results for additive valuations also
guarantee EF1.

welfare (MNW), for both additive valuations and subaddi-
tive valuations. Our results are demonstrated in Figure 1,
where the left and right figures correspond to additive and
subadditive valuations, respectively.

Our first result gives existence guarantees on partial allo-
cations with approximate EFX and approximate MNW (and
EF1), for additive valuations.
Theorem 1. Every instance with additive valuations admits
a partial allocation that is α-EFX, EF1, and 1

α+1 -MNW, for
every 0 ≤ α ≤ 1.

For 0 ≤ α ≤ φ − 1 ≈ 0.618, we show that our partial
allocations can be turned into complete ones without any
loss. This is cast in the following theorem.
Theorem 2. Every instance with additive valuations admits
a complete allocation that is α-EFX, EF1, and 1

α+1 -MNW,
for every 0 ≤ α ≤ φ− 1 ≈ 0.618.

In particular, Theorem 2 extends the existence of (φ −
1)-EFX complete allocation (Amanatidis, Markakis, and
Ntokos 2020) to (φ − 1)-EFX complete allocation that is
also (φ− 1)-MNW. Note that, by Theorem 4 below, (φ− 1)
is the highest possible MNW approximation of a (complete
or partial) (φ− 1)-EFX allocation.

Our final positive result shows that for any 0 ≤ α ≤ 1/2,
the same trade-off between EFX and MNW approximation
extends to subadditive valuations.
Theorem 3. Every instance with subadditive valuations ad-
mits a complete allocation that is α-EFX and 1

α+1 -MNW, for
every 0 ≤ α ≤ 1/2.

In particular, Theorem 3 extends the existence of a 1/2-
EFX and 1/2-MNW complete allocation by (Garg et al.

2023) to the existence of a 1/2-EFX complete allocation that
is also 2/3-MNW. Note that, by Theorem 4 below, 2/3 is the
highest possible MNW approximation of a (complete or par-
tial) 1/2-EFX allocation, even for additive valuations.

More generally, our tradeoffs are tight, as the following
theorem shows.
Theorem 4 (Impossibility results). For every 0 < α ≤ 1
and β > 1

α+1 , there exists an instance with additive (and
hence also subadditive) valuations that admits no allocation
(even partial) that is α-EFX and β-MNW. Moreover, for ev-
ery α, β > 0, there exists an instance with monotone valua-
tions that admits no allocation that is α-EFX and β-MNW.

Computational remarks. While our positive results
(Theorems 1, 2, 3) are stated as existence results, to prove
the existence of allocations with the stated guarantees, we
construct polynomial-time algorithms that find such alloca-
tions, given a max Nash welfare (MNW) allocation as input.

Moreover, the algorithms used to prove Theorems 1 and 3
apply also when given an arbitrary allocation as input. In
particular, these are poly-time algorithms which, given an
arbitrary allocation X as input, produce an α-EFX allocation
that gives at least a 1/(α + 1) fraction of the Nash welfare
of X , under the corresponding conditions.

Thus, when given black-box access to an algorithm that
computes a β-MNW allocation, they provide an α-EFX al-
location that is also β/(α+ 1)-MNW. This extension is im-
portant in light of the fact that finding a MNW allocation
is NP-hard, even for additive valuations (Ramezani and En-
driss 2009), while constant approximation algorithms exist,
even for subadditive valuations.

In particular, using this extension, combined with the
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(e−1/e − ε)-MNW approximation for additive valuations
(Barman, Krishnamurthy, and Vaish (2018)) and the
(1/4 − ε)-MNW approximation for submodular valuations
(Garg et al. (2023)) and the constant-factor-MNW approxi-
mation for subadditive valuations (Dobzinski et al. (2023)),
our algorithms find in polynomial time a partial α-EFX
allocation with constant-factor-MNW, for any 0 ≤ α ≤ 1/2
when valuations are subadditive, and any 0 ≤ α ≤ 1 when
valuations are additive. See section A of the full version for
more details.

Maximin share guarantees. Even though the allocations
that we construct in the proof of Theorem 2 are designed
with EFX and MNW in mind, they also satisfy other desir-
able fairness notions related to the maximin share guarantee.
More specifically, on top of α-EFX, EF1, and 1

α+1 -MNW,
these allocations are also α

α2+1 -GMMS (and hence α
α2+1 -

MMS) and (φ−1)-PMMS. See section C of the full version
for definitions and more details.

It is worth noting that while the result of Amanatidis,
Markakis, and Ntokos (2020) guarantees for every instance
with additive valuations the existence of a complete alloca-
tion that is (φ−1)-EFX, EF1, ( 2

2+φ ≈ 0.55)-GMMS, (2/3)-
PMMS with no efficiency guarantees, our result gives a com-
plete allocation that is (φ− 1)-EFX, EF1, ( φ−1

φ2−2φ ≈ 0.44)-
GMMS, (φ− 1)-PMMS, and (φ− 1)-MNW.

Model and Preliminaries
Our Model
We consider settings with a set [n] = {1, . . . , n} of n agents,
and a set [m] = {1, . . . ,m} of m items. Every agent i ∈ [n]
has a valuation function denoted by vi : 2

[m] → R≥0, which
assigns a real value vi(S) to every set of items S ⊆ [m]. We
consider the following valuation classes:

• additive: vi(S ∪ T ) = vi(S) + vi(T ) for any disjoint
S, T ⊆ [m].

• subadditive: vi(S ∪ T ) ≤ vi(S) + vi(T ) for any (not
necessarily disjoint) S, T ⊆ [m].

An instance of a resource allocation problem is given by a
collection of valuation functions v1, . . . , vn over the set of m
items. Throughout this paper, we use the standard notation
vi(g) = vi({g}) for g ∈ [m] and Z − g = Z \ {g} and
Z + g = Z ∪ {g} for {g}, Z ⊆ [m].

An allocation X = (X1, . . . , Xn) is a collection of dis-
joint subsets of items, i.e., Xi ∩ Xj = ∅ for i ̸= j and
Xi ⊆ [m] for every i ∈ [n]. We say that X is complete if⋃

i∈[n] Xi = [m], and that it is partial otherwise.
The Nash welfare of an allocation X is denoted by

NW(X) =
∏

i∈[n] vi(Xi)
1/n. For every instance, a maxi-

mum Nash welfare (MNW) allocation X is any allocation
that maximizes NW(X) among all possible allocations. We
say that an allocation Z is β-MNW for some β ∈ [0, 1] if it
holds that NW(Z) ≥ β ·NW(X).

An allocation X is α-EFX if for every i, j ∈ [n] and g ∈
Xj , it holds that vi(Xi) ≥ α · vi(Xj − g). Whenever this
condition is violated, i.e., vi(Xi) < α · vi(Xj − g) for some

g ∈ Zj , then we say that the agent i envies agent j in the α-
EFX sense. We say that an allocation is EFX if it is 1-EFX.

From Partial Allocations to Complete Allocations
The main tool that we use to turn partial allocations into
complete ones with the same fairness and Nash welfare
guarantees is the envy-cycles procedure (Lipton et al. 2004).
In this procedure, as long as the allocation is not complete,
we take one of the unallocated items and give it to an agent
that no other agent envies, or if there is no such agent, then
we find a cycle of agents with the property that each agent
prefers the bundle of the following agent, and then we im-
prove the allocation by moving the bundles along the cycle.

For our purposes, the crucial observation is that if the
value of any agent for any of the unallocated items is
bounded, then this procedure preserves the initial EFX guar-
antees. The same observation was used by Garg et al. (2023)
to show that there exists a complete 1/2-EFX and 1/2-
MNW allocation for subadditive valuations, by Amanatidis,
Markakis, and Ntokos (2020) to show that there exists a
complete (φ − 1)-EFX allocation (with no guarantees on
Nash welfare) for additive valuations, and by Farhadi et al.
(2021) to show that there exists a complete 0.73-EFR (envy-
free up to a random good) allocation for additive valuations.

More formally, consider the following definition.
Definition 1 (γ-separation). Let Z = (Z1, . . . , Zn) be a
partial allocation, and let U be the set of unallocated items in
Z. We say that Z satisfies γ-separation, for some γ ∈ [0, 1],
if for every agent i, it holds that γ · vi(Zi) ≥ vi(x) for all
x ∈ U , i.e., agent i prefers Zi significantly more (by a factor
of 1/γ) than any single unallocated item.

The following key lemma is based on the fact that for any
partial allocation that is α-EFX and γ-separated, the envy
cycles procedure produces a complete min(α, 1/(1 + γ))-
EFX allocation with weakly higher Nash welfare.
Lemma 1. Let Z = (Z1, . . . , Zn) be a partial allocation
that is α-EFX and satisfies γ-separation. Then, there exists
a complete allocation Y that is min(α, 1/(1+γ))-EFX such
that NW(Y ) ≥ NW(Z). Moreover, if Z is EF1, then Y is
also EF1.

With this lemma in hand, in order to establish the exis-
tence of complete allocations with good EFX and MNW
guarantees, it suffices to produce partial allocations with
good Nash welfare and separation guarantees.

Additive Valuations
In this section, we study instances with additive valuations.
We first prove Theorem 1 by constructing a partial alloca-
tion with the desired EFX and MNW guarantees, and then
we prove Theorem 2 by using Lemma 1 to turn the partial
allocation into a complete allocation.

Partial Allocations
Our main result in this section is the following:
Theorem 1. Every instance with additive valuations admits
a partial allocation that is α-EFX, EF1, and 1

α+1 -MNW, for
every 0 ≤ α ≤ 1.
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Algorithm 1: Additive valuations.

Input (X1, . . . , Xn) is a complete MNW allocation.
Output (M1, . . . ,Mn) is a partial α-EFX

and 1
α+1 -MNW allocation.

1: match i to J means Mi ← J
2: unmatch Zi means Mu ← ⊥ if there is u matched to Zi

3: procedure ALG
4: Z ← (X1, . . . , Xn)
5: M ← (⊥, . . . ,⊥)
6: while there is an agent i with Mi = ⊥ do
7: i⋆ ← any agent with Mi = ⊥
8: if (vi⋆(Zi⋆) ≥ α·vi⋆(Zj−g) for all j and g ∈ Zj

9: and Zi⋆ = Xi⋆ ) or
10: (vi⋆(Zi⋆) ≥ vi⋆(Zj − g) for all j and g ∈ Zj

11: and Zi⋆ ̸= Xi⋆ ) then
12: unmatch Zi⋆

13: match i⋆ to Zi⋆

14: else
15: j⋆, g ← any j⋆ and g ∈ Zj⋆

16: that maximize vi⋆(Zj⋆ − g)
17: unmatch Zj⋆

18: change Zj⋆ to Zj⋆ − g
19: match i⋆ to Zj⋆

20: end if
21: end while
22: return (M1, . . . ,Mn)
23: end procedure

To prove Theorem 1, we use Algorithm 1, which general-
izes the algorithm used in Caragiannis, Gravin, and Huang
(2019) to produce a partial allocation that is (fully) EFX and
1/2-MNW. For the special case of α = 1, our algorithm is
essentially the same as the original one. A very similar modi-
fication of the original algorithm was also used by Garg et al.
(2023) for the special case of α = 1/2; however, their mod-
ification differs from Algorithm 1 in that it does not guaran-
tee EF1 for additive valuation. Both of the algorithms used
in Caragiannis, Gravin, and Huang (2019) and in Garg et al.
(2023) were described using a certain notion of EFX fea-
sibility graphs. Here, we present Algorithm 1 in a different
way without referring to that notion, which also gives a more
direct description of the previous algorithms.

In Algorithm 1, we start with a maximum Nash welfare al-
location X = (X1, . . . , Xn), and we iteratively drop items
that cause envy, possibly reordering the bundles between
agents at the same time. We continue to do so until we reach
an α-EFX and EF1 allocation M = (M1, . . . ,Mn). For ex-
ample, in the instance described in Example 1, with alloca-
tion X1 = {a}, X2 = {b, c}, we first remove item b from
X2; this eliminates the envy of agent 1 for agent 2.

We refer to M as a matching between agents and bun-
dles of items. We say that an agent i is matched to Mi if
Mi ̸= ⊥, and that i is unmatched otherwise. The algorithm
maintains a set of bundles (Z1, . . . , Zn) which are initially
set to Zi = Xi. Throughout the algorithm, every matched
agent i is matched to some bundle Zj . We say that Zj is

matched to i if Mi = Zj . The matching M never assigns
the same bundle to two agents, and at the end of the algo-
rithm, every bundle Zj is matched to some agent i. This is
formally stated in the following claim.
Claim 1. At the end of each iteration of the algorithm, for
any agent i, it holds that Zi ⊆ Xi and Mi ∈ {⊥} ∪
{Zj | j ∈ [n]}. Moreover, for any distinct agents i1 and i2
with Mi1 ,Mi2 ̸= ⊥, it holds that Mi1 ̸= Mi2 .

The high-level idea of the algorithm is as follows: The al-
gorithm starts off by setting Zi = Xi for every agent i; recall
that X is an MNW allocation. At first, no agent is matched.
Then, the algorithm proceeds by shrinking the bundles Zj’s
and matching them to agents in a way that eliminates envy.
More precisely, as long as there is an unmatched agent i⋆,
one of the following two operations takes place. (i) If Zi⋆ is
“good enough” for i⋆, then i⋆ is matched to Zi⋆ . The con-
dition for Zi⋆ to be good enough for i⋆ in the case where
Zi⋆ = Xi⋆ is that if i⋆ gets Zi⋆ , then she does not envy
any other bundle Zj for any agent j, in the α-EFX sense.
If Zi⋆ ⊊ Xi⋆ , then the condition is that if i⋆ gets Zi⋆ , then
she does not envy any other bundle Zj for any agent j, in
the EFX sense, which is a stronger requirement than in the
Zi⋆ = Xi⋆ case. (ii) Otherwise, if Zi⋆ is not good enough for
i⋆, the algorithm picks the most valuable (from the perspec-
tive of i⋆) strict subset of Zj⋆ for some j⋆, shrinks Zj⋆ to the
chosen strict subset, and matches i⋆ to the new Zj⋆ (leaving
the agent previously matched to Zj⋆ , if any, unmatched). It
can be shown that in this case, i⋆ does not envy any other
bundle Zj in the stronger sense of EFX (rather than α-EFX).

Let us first make a few simple observations that are crucial
to the analysis of the algorithm. First, the matching of the
algorithm ensures that Mi⋆ is “good enough” for i⋆ when-
ever i⋆ is matched. This in fact implies that the final allo-
cation M is α-EFX and EF1. Second, whenever an agent
i with an untouched bundle is matched by the second op-
eration (lines 15-19), she is matched to a bundle that she
prefers significantly more (by a factor of 1/α) to Zi. Third,
any touched bundle, i.e., one from which the algorithm re-
moved an element, is matched. These observations are for-
mally stated in the following claim.
Claim 2. Consider the state of the algorithm at the end of
any iteration. Let i be any matched agent. It holds that if
Zi = Xi, then vi(Mi) ≥ α · vi(Zj − g) for all j and all
g ∈ Zj , and if Zi ̸= Xi, then vi(Mi) ≥ vi(Zj − g) for all j
and all g ∈ Zj . It also holds that if Mi ̸= Zi, then vi(Mi) >
vi(Zi), and if Mi ̸= Zi and Zi = Xi, then vi(Mi) > (1/α)·
vi(Zi). Finally, for any agent i with Zi ⊊ Xi, there is some
agent u with Mu = Zi.

The crucial part of the analysis is to show that the items
are removed conservatively so that for each agent her final
bundle is worth at least a 1/(α + 1) fraction of the bundle
she started with, which yields a 1/(α+ 1) approximation to
the maximum Nash welfare. This is the key lemma in our
analysis.
Lemma 2. At the end of the run of the algorithm, we have
vi(Zi) ≥ 1

α+1 · vi(Xi).

To prove this, we assume that this condition is violated at
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some point, and we use this assumption to construct an allo-
cation with higher Nash welfare than the initial one, which
contradicts the assumption that the algorithm is given the
Nash welfare maximizing allocation as input.

With this lemma in hand, we can prove Theorem 1.

Proof of Theorem 1. The allocation (M1, . . . ,Mn) is α-
EFX by Claims 1 and 2. Moreover, M is EF1 since either
Zi ⊊ Xi and the property follows from Claim 2, or Zi = Xi

and then, since X is EF1 by the result of Caragiannis et al.
(2016), for all agents j, it holds that vi(Mi) ≥ vi(Zi) =
vi(Xi) ≥ vi(Xj − g) ≥ vi(Zj − g) for some g ∈ Xj .

Fix any agent i. Let j be the unique agent matched to
Zi. By Claim 2, it holds that vi(Zj) ≥ vi(Zi). There-
fore, by Lemma 2,

∏
i∈[n] vi(Mi)

1/n ≥
∏

i∈[n] vi(Zi)
1/n ≥∏

i∈[n](
1

α+1 · vi(Xi))
1/n = 1

α+1 ·
∏

i∈[n] vi(Xi)
1/n and so

the result follows.

Complete Allocations
In this section, we provide the following result.
Theorem 2. Every instance with additive valuations admits
a complete allocation that is α-EFX, EF1, and 1

α+1 -MNW,
for every 0 ≤ α ≤ φ− 1 ≈ 0.618.

Here, the crucial part of the analysis is to provide the ap-
propriate bounds on the value of the unallocated items so
that we can use Lemma 1. Let (Z1, . . . , Zn) be the bundles
at the end of the run of Algorithm 1. The following lemma
is the key component in the proof of Theorem 2. It offers ad-
ditional analysis of Algorithm 1, showing that the allocation
returned by this algorithm is α-separated.
Lemma 3. The partial allocation (Z1, . . . , Zn) satisfies α-
separation.

The remainder of this section is dedicated to proving this
lemma. We prove the α-separation property by constructing
an allocation X̂ which is built from X and using the opti-
mality of X to infer that the Nash welfare of X̂ is at most
the Nash welfare of X . The construction of X̂ is based on a
non-trivial redistribution of the items among agents, which
requires additional definitions, as follows.
Definition 2 (Touching). For any agent i with Zi ⊊ Xi,
we say that agent k was the last one to touch i if in the last
iteration in Algorithm 1 with j⋆ = i, it was the case that
i⋆ = k. If, on the other hand, Zi = Xi, then we say that
agent i is untouched.
Definition 3 (Touching sequence). Given any agent i, we
define a touching sequence k1, . . . , kℓ in the following way.
Let k1 = i. For every s ≥ 1 define ks+1 to be the last agent
to touch ks, until either (i) ks is untouched, or (ii) the last
agent to touch ks is already in the sequence k1, . . . , ks−1.
Let ℓ = s for s where the process ends.

We also use the following technical lemma.

Lemma 4. Let i and j be any distinct agents. Let X̂i =

(Xi \ Zi) ∪ (Xj \ Zj). Suppose that vi(X̂i) ≤ α · vi(Xi).
Then, vi(x) ≤ α · vi(Zi) for all x ∈ Xj \ Zj .

We now present a simplified proof of Lemma 3.

Simplified proof of Lemma 3. Fix any agents i and j with
Zj ̸= Xj and any item x ∈ Xj \ Zj . The goal is to show
that vi(x) ≤ α · vi(Zi). Let k1, . . . , kℓ be the touching se-
quence starting with k1 = i (Definition 3). In the simplified
version of the proof, we assume that i ̸= j, that k ends with
condition (i), and that j = kt for some 2 ≤ t ≤ ℓ.

Consider the following allocation (X̂1, . . . , X̂n).

X̂j = Zkt−1

X̂i = (Xi \ Zi) ∪ (Xj \ Zj)

X̂kℓ
= Xkℓ

∪ Zkℓ−1

X̂ks = (Xks \ Zks) ∪ Zks−1 for s /∈ {1, t, ℓ}

where X̂r = Xr for any r /∈ {k1, . . . , kℓ}. By Lemma 2
and Claim 2, it holds that vj(X̂j) = vj(Zkt−1

) ≥ vj(Zj) ≥
(1/(α+ 1)) · vj(Xj). Similarly, for s /∈ {1, t, ℓ}, it holds
that vks

(X̂ks
) = vks

((Xks
\ Zks

) ∪ Zks−1
) ≥ vks

(Xks
).

Finally, since Xkℓ
= Zkℓ

, Claim 2 gives vkℓ
(X̂kℓ

) =
vkℓ

(Xkℓ
∪ Zkℓ−1

) ≥ vkℓ
(Xkℓ

) + (1/α) · vkℓ
(Xkℓ

) =
((α+1)/α)·vkℓ

(Xkℓ
). Combining all the inequalities above

gives, by optimality of X , that

1 ≥ vj(X̂j)

vj(Xj)
· vi(X̂i)

vi(Xi)
· vk3

(X̂k3
)

vk3
(Xk3

)
· · · vkℓ

(X̂kℓ
)

vkℓ
(Xkℓ

)

≥ (1/(α+ 1)) · vi(X̂i)

vi(Xi)
· 1 · · · 1 · ((α+ 1)/α).

After rearranging we can apply Lemma 4 which proves α-
separation.

Finally, we prove the main theorem of this section.

Proof of Theorem 2. Since vi(Mi) ≥ vi(Zi) by Claim 2, it
follows from Lemma 3 that the allocation (M1, . . . ,Mn) re-
turned by the algorithm is α-separated. Hence, by Lemma 1,
there exists a complete allocation that is min(α, 1

α+1 )-EFX,
EF1, and 1

α+1 -MNW. This proves the theorem since for α ≤
φ− 1 it holds that 1

α+1 ≥ α and so min(α, 1
α+1 ) = α.

Subadditive Valuations
In this section, we study settings with subadditive valua-
tions. We first prove Theorem 5 by constructing a partial
allocation with the desired EFX and MNW guarantees, and
then we prove Theorem 3 by using Lemma 1 to turn the par-
tial allocation into a complete allocation.

Partial Allocations
In this section, we establish the following theorem.
Theorem 5. Every instance with subadditive valuations ad-
mits a partial allocation that is α-EFX and 1

α+1 -MNW, for
every 0 ≤ α ≤ 1/2.

The proof of Theorem 5 is based on a non-trivial modi-
fication of Algorithm 1 which, on a high level, proceeds as
follows. As in Algorithm 1, we start with a maximum Nash
welfare allocation and we keep removing items to elimi-
nate envy. In the modified algorithm, however, we also allow
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some additional operations, e.g., we might match an agent to
the bundle Xj\Zj of items that have been removed from Zj .

Due to space limitations, the complete description of the
algorithm for subadditive valuations, along with its analysis,
is deferred to Section 4 of the full version. Here, we discuss
some of the challenges that arise in settings with subaddi-
tive valuations and some of the techniques we use to ad-
dress them. For concreteness, we focus on the special case
of α = 1/2. Let us consider the following example.

Example 2. Consider an instance with n agents and a set of
items {a1, . . . , an−1, b1, . . . , bn−1, c}. For all 1 ≤ i ≤ n−1,
vi is additive and given by vi(ai) = 1/2+ε, vi(bi) = 1/2−
ε, and vi(r) = 0 for all the remaining items r. Moreover, vn
is subadditive and given by vn(ai) = 2 + ε and vn(bi) = 0
for all i, vn(c) = 1, and vn(S) = maxg∈S vn(g).

Note that the unique maximum Nash welfare allocation in
Example 2 is Xi = {ai, bi} and Xn = {c}. Executing Al-
gorithm 1 on this instance results in the following. Initially,
Zi = Xi and Mi = ⊥. Suppose that the algorithm first
selects i⋆ = n as the unmatched agent and j⋆ = 1 as the
envied agent with g = b1. Then, b1 is removed from Z1, i.e.,
Z1 = {a1}, and agent n is matched to Z1, i.e., Mn = Z1.
Now, suppose that the algorithm selects agent i⋆ = 1 as the
unmatched agents. Then, Z1 is unmatched from agent n and
matched to agent 1, i.e., M1 = Z1 and Mn = ⊥. Now,
suppose that the same happens with all the remaining agents
2, . . . , n − 1 so that it holds that Mi = Zi = {ai} for all
1 ≤ i ≤ n − 1. Then, the algorithm finally matches agent
n to Zn which results in a 1/2-EFX allocation with Nash
welfare of (1/2 + ε)(n−1)/n.

As clearly demonstrated by this example, the technique
from Algorithm 1 does not yield the 2/3-MNW guarantee
given by Theorem 5. In fact, it cannot give any guaran-
tee better than 1/2-MNW which matches the result of Garg
et al. (2023) based on a variant of Algorithm 1.

Let us now discuss how to overcome the problem that
arises in the instance described above. When the algorithm
selects the unmatched agent i⋆ = n and the envied agent
j⋆ = 1 with g = b1, the issue is that b1 is too large of
a part of X1 = {a1, b1} to be removed; more precisely,
v1(X1−b1) = v1(a1) = (1/2+ε)·v1(X1) < (2/3)·v1(X1)
and so removing b1 from Z1 violates the condition given in
Lemma 2 which was the key part in proving the desired Nash
welfare guarantees.

What the modified algorithm does in this case is to set
Z1, X1 ← {b1} and Mn ← {a1}. Note that this violates two
invariants that were crucial in the analysis of Algorithm 1.
First, it no longer necessarily holds that Mi ∈ {⊥} ∪ {Zj :
j ∈ [n]}. We call the bundles for which this condition does
not hold the blue bundles. Second, it no longer holds that Xi

remains constant throughout the execution of the algorithm.
However, violating the two invariants allows the modified
algorithm to satisfy an analogous guarantee to Lemma 2.

Lemma 5. At the end of the execution of the modified algo-
rithm, we have vi(Zi) ≥ 1

α+1 · vi(Xi).

Note that this lemma no longer immediately implies that
the final allocation is 1

α+1 -MNW, as was the case for Al-

gorithm 1. This is because at the end of the run of the al-
gorithm, the bundles Xi are not the original Nash welfare
maximizing bundles. However, we make two crucial obser-
vations. (i) We can lower bound the Nash welfare of the final
allocation using the number of the blue bundles. (ii) Every
time that the modified algorithm shrinks a bundle Xi, it also
adds an additional blue bundle to the current matching which
compensates for that change. This is cast in the following
lemma.
Lemma 6. At the end of the execution of the modified algo-
rithm, we have

(i)
∏
i∈[n]

vi(Mi) ≥
(

1

α+ 1

)n−ℓ(
1

α

)ℓ ∏
i∈[n]

vi(Xi).

(ii)

(
α+ 1

α

)ℓ ∏
i∈[n]

vi(Xi) ≥
∏
i∈[n]

vi(X
0
i )

where X0 is the initial MNW allocation and ℓ denotes the
number of blue bundles in the final matching.

Let us also remark that since some of the crucial invari-
ants of the analysis of Algorithm 1 are violated by the opera-
tions performed by the modified algorithm, it becomes much
more challenging to ensure that the final allocation satisfies
α-EFX. In particular, note that during the execution of Al-
gorithm 1, once an agent i is matched to some bundle Zj ,
this bundle remains good enough for i after any number of
further iterations. The same might not hold for the modified
algorithm. Indeed, note that when we remove a good from
the bundle Zr for some agent r, the bundle Xr\Zr increases
by this one good, and it might happen that the bundle Xr\Zr

is then matched to some other agent which potentially vio-
lates the α-EFX condition for agent i who is still matched to
Zj . This issue requires a careful treatment both in the design
and the analysis of the modified algorithm; the details can
be found in the full version.

Finally, we combine the statements of Lemma 6 to obtain
the Nash welfare guarantees of the allocation returned by the
modified algorithm.

Proof of Theorem 5. By Lemma 6, we get∏
i∈[n] vi(Mi) ≥ ( 1

α+1 )
n−ℓ( 1

α )
ℓ
∏

i∈[n] vi(Xi) =

( 1
α+1 )

n(α+1
α )ℓ

∏
i∈[n] vi(Xi) ≥ ( 1

α+1 )
n
∏

i∈[n] vi(X
0
i )

where X0 is the initial MNW allocation and ℓ denotes the
number of blue bundles in the final matching, and hence, M
is 1

α+1 -MNW.

Complete Allocations
The main result of this section is the following theorem.
Theorem 3. Every instance with subadditive valuations ad-
mits a complete allocation that is α-EFX and 1

α+1 -MNW, for
every 0 ≤ α ≤ 1/2.

Proof of Theorem 3. Using the swapping with singletons
technique from (Garg et al. 2023, Section 4.1), we can show
that the partial allocation given in Theorem 5 can be turned
into a 1-separated allocation while preserving the α-EFX
and 1

α+1 -MNW guarantees. The result then follows directly
from Lemma 1.
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