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Abstract
We study two recent combinatorial contract design models, which highlight different sources of
complexity that may arise in contract design, where a principal delegates the execution of a costly
project to others. In both settings, the principal cannot observe the choices of the agent(s), only
the project’s outcome (success or failure), and incentivizes the agent(s) using a contract, a payment
scheme that specifies the payment to the agent(s) upon a project’s success. We present results that
resolve open problems and advance our understanding of the computational complexity of both
settings.

In the multi-agent setting, the project is delegated to a team of agents, where each agent chooses
whether or not to exert effort. A success probability function maps any subset of agents who exert
effort to a probability of the project’s success. For the family of submodular success probability
functions, Dütting et al. [2023] established a poly-time constant factor approximation to the optimal
contract, and left open whether this problem admits a PTAS. We answer this question on the
negative, by showing that no poly-time algorithm guarantees a better than 0.7-approximation to the
optimal contract. For XOS functions, they give a poly-time constant approximation with value and
demand queries. We show that with value queries only, one cannot get any constant approximation.

In the multi-action setting, the project is delegated to a single agent, who can take any subset of
a given set of actions. Here, a success probability function maps any subset of actions to a probability
of the project’s success. Dütting et al. [2021a] showed a poly-time algorithm for computing an
optimal contract for gross substitutes success probability functions, and showed that the problem is
NP-hard for submodular functions. We further strengthen this hardness result by showing that this
problem does not admit any constant factor approximation. Furthermore, for the broader class of
XOS functions, we establish the hardness of obtaining a n−1/2+ε-approximation for any ε > 0.
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1 Introduction

Contract theory is a pillar in microeconomics, studying how to incentivize agents to exert
costly effort when their actions are hidden. This problem is explored using the principal-agent
model introduced by Holmström [17] and Grossman and Hart [14]. In this model, a principal
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44:2 On the (In)approximability of Combinatorial Contracts

wishes to delegate the execution of a costly task to an agent who can take one of n actions,
each associated with a cost and a probability distribution over outcomes. The agent’s action
is hidden from the principal, who can observe only the realized outcome. To incentivize
the agent to exert effort, the principal designs a contract, which is a payment scheme that
specifies a payment for every possible outcome. The goal of the principal is to find a contract
that maximizes her utility (expected reward minus expected payment), assuming the agent
takes the action that maximizes his own utility (expected payment minus cost). This problem
can be solved in polynomial time using linear programming [14].

In recent years, the principal-agent model has been extended to combinatorial settings
along different dimensions, such as multiple agents [2, 12, 9], multiple actions [8] and
exponentially many outcomes [11].

In this work, we study two of these combinatorial contract models, namely the multi-
agent and multi-action settings. In both of these models, the focus is on the case of binary
outcome, where the project can either succeed or fail, and the principal receives some
reward (normalized to 1) if the project succeeds. Notably, finding an (approximate) optimal
contract in the binary-outcome model, is equivalent to finding an (approximate) optimal
linear contract in settings with more than two outcomes. Thus, we restrict attention to
linear contracts without loss of generality. Moreover, since our focus is on hardness results,
restricting attention to the binary-outcome case only strengthens our results.

Setting 1: Multi-agent. In the multi-agent model [2, 9], the principal delegates the
execution of a costly project to a team of n agents. Every agent can either exert effort (at
some cost to the agent) or not. At the heart of the model is a success probability function
f : 2[n] → [0, 1], which specifies, for every subset of agents who exert effort, the probability
that the project succeeds.

The principal incentivizes the agents through a contract that specifies for every agent i,
a non-negative payment αi that the principal pays the agent if the project succeeds. The
principal’s utility is defined as her expected reward minus the expected sum of payments
to the agents. Given a contract, an agent’s utility is defined as his expected payment from
the contract minus his cost if he chooses to exert effort. Thus, a contract by the principal
induces a game between the agents, and we consider the agent actions in an equilibrium of
the game. The principal’s goal is to maximize her expected utility in equilibrium.

For submodular success probability functions, Dütting et al. [9] devise a constant factor
approximation algorithm, using value query access (a value query receives a set S ⊆ [n]
and returns the value f(S)). They left as an open problem whether the problem admits a
PTAS. For the larger class of XOS success probability functions, they also give a constant
approximation algorithm, using both value and demand queries (a demand query receives a
price vector p ∈ Rn

≥0, and returns a set S that maximizes f(S) −
∑

i∈S pi). For the XOS
class, they show that it is not possible to obtain a better-than-constant approximation with
value and demand queries.

Setting 2: Multi-action. In the multi-action model [8], the principal delegates the execution
of the project to a single agent, who can take any subset of n possible actions. Each action i

is associated with a cost ci, and when the agent executes a set of actions S ⊆ [n], he incurs
the sum of their costs. Here, the success probability function f : 2[n] → [0, 1] maps any
subset of the actions to a success probability of the project.

In this model, the principal specifies a single non-negative payment α that is paid to the
agent if the project succeeds. The agent then chooses a subset of actions that maximizes his
utility (the expected payment from the principal minus the cost he incurs). The principal’s
utility is the expected reward minus the expected payment to the agent.
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Dütting et al. [8] show that computing an optimal contract for submodular success
probability functions is NP-hard, and left as an open question whether there exists an
approximation algorithm for the problem, for submodular success probability functions, as
well as for the larger classes of XOS and subadditive functions. (For the class of gross-
substitutes success probability functions – a strict subclass of submodular functions – they
devise a polytime algorithm for computing an optimal contract, using access to a value
oracle.)

1.1 Our Results
Setting 1: Multi-agent. Our first set of results concern the multi-agent setting. The first
result resolves the open question from [9] in the negative, showing that the multi-agent
problem with submodular success probability functions does not admit a PTAS.

▶ Theorem (multi-agent, submodular). In the multi-agent model, with submodular success
probability function, no polynomial time algorithm with value oracle access can approximate
the optimal contract to within a factor of 0.7, unless P=NP.

We then turn to XOS success probability functions. Dütting et al. [9] provide a poly-time
constant approximation for XOS with demand queries. We show that no algorithm can
do better than O(n−1/6)-approximation with poly-many value queries, thus establishing a
separation between the power of value and demand queries for XOS functions.

▶ Theorem (multi-agent, XOS). In the multi-agent model, with XOS success probability
function, no (randomized) algorithm that makes poly-many value queries can approximate
the optimal contract (with high probability) to within a factor greater than 4n−1/6.

Setting 2: Multi-action. Our second set of results consider the multi-action model. We
first show that obtaining any constant approximation for submodular functions is hard.

▶ Theorem (multi-action, submodular). In the multi-action model, with submodular success
probability function f , no polynomial time algorithm with value oracle access can approximate
the optimal contract to within a constant factor, unless P=NP.

We then show that for the broader class of XOS success probability functions, it is hard
to obtain a n−1/2+ε-approximation for any ε > 0.

▶ Theorem (multi-action, XOS). In the multi-action model, with XOS success probability
function, under value oracle access, for any ε > 0, no polynomial time algorithm with value
query access can approximate the optimal contract to within a factor of n− 1

2 +ε, unless P=NP.

1.2 Our Techniques
Submodular functions. Both of our hardness results for submodular functions are based
on an NP-hard promise problem for normalized unweighted coverage functions (a subclass of
submodular), which is a generalization of a result by Feige [13]. We introduce this problem
and Section 3, and the proof of its hardness can be found in the full version of this paper.

In particular, we show that it is NP-hard to distinguish between a normalized unweighted
coverage function f that has a relatively small set S with f(S) = 1, and one for which a
significantly larger set would be required to get close to 1. This leads to our submodular
hardness results as follows: by setting uniform costs to all actions/agents, an optimal contract
has a significantly different utility to the principal in each case. When a relatively small set
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S achieves f(S) = 1, the principal’s utility is relatively high, and when a significantly larger
set is required to get close to 1, the principal’s utility is relatively low. In the multi-agent
setting, the principal’s utility from a given contract is easy to compute, which allows an
approximately optimal contract to distinguish between the two cases.

In the multi-action setting, where the principal’s utility from a given contract isn’t
necessarily easy to compute, our reduction also involves the addition of a new action. This
new action is defined in such a way that only a high payment to the agent incentivizes the
agent to take it. Thus - the principal has to decide whether to choose the optimal contract
for the original problem, or to incentivize the agent to take this new action, which leads to a
separation of approximately optimal contracts between the two cases.

Multi-action, XOS functions. For this result, we construct a reduction from the problem
of approximating the size of the largest clique in a graph to our problem. We rely on the
hardness result of Håstad [16] and Zuckerman [25] for approximating the largest clique in
a graph G, denoted by ω(G). In particular, Håstad [16] and Zuckerman [25] show that
there is no poly-time algorithm that approximates ω(G) within a factor of n−1+ε (for any
ε > 0) unless P=NP. We show that given a β-approximation algorithm (for β ∈ (0, 1)) for
the optimal contract, one can approximate ω(G) within a factor of β2/4, which implies our
inapproximability of n−1/2+ε for the optimal contract. To achieve this, for any parameter
β ∈ (0, 1), we give an algorithm that on input (G, δ), where G is a graph and δ ∈ N+, creates
an instance of the multi-action contract problem with an XOS success probability function,
for which value queries can be computed in polynomial time. In the constructed instance
there are only two “reasonable” candidates for a contract, regardless of the structure of G;
these are the values of α at which the agent’s best response may change. The lower of these
candidates is better than the other by at least a factor of β when ω(G) ≤ δ, and the reverse
is true when ω(G) ≥ 2δ/β2. This gives us the ability to distinguish between the case where
ω(G) ≤ δ and ω(G) ≥ 2δ/β2. By repeating this process for different values of δ we can
approximate ω(G) within a factor of β2/4.

Multi-agent, XOS functions. Our inapproximability result for this case is information
theoretic, and relies on “hiding” a good contract, so that no algorithm with poly-many value
queries can find it with non-negligible probability. In particular, for any n, we choose a
set G ⊆ A of m = n1/3 “good” agents uniformly at random. We define an XOS success
probability function such that sets of size O(m) may have a high success probability only if
they have a large intersection with G, and any value query reveals negligible information
regarding the set G. We set equal costs such that incentivizing more than 2m agents becomes
unprofitable to the principal. Thus, in order to get a good approximation, the algorithm
must find a relatively small set of agents that has a large intersection with G. Since our
construction of the success probability function is such that value queries reveal negligible
information on G, the algorithm has a negligible probability of finding such a set.

1.3 Related Work
Multi-agent settings: additional related work. Babaioff et al. [2] introduced a multi-agent
model where every agent decides whether to exert effort or not, and succeeds in his own task
(independently) with a higher probability if he exerts effort. The project’s success is then a
function of the individual outcomes by the agents. They show that computing the optimal
contract in this model is #P-hard in general, and provide a polytime algorithm for the
special case where the project succeeds iff all agents succeed in their individual tasks (AND
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function). Emek and Feldman [12] show that computing the optimal contract in the special
case where the project succeeds iff at least one agent succeeds (OR function) is NP-hard,
and provide an FPTAS for this problem.

Dütting et al. [9] extend the model of [2] to the model presented in our paper, where
the project’s outcome is stochastically determined by the set of agents who have exerted
effort, according to a success probability function f : 2[n] → [0, 1]. Their primary result is the
development of a constant approximation algorithm for XOS success probability functions.
They complement this result by showing an upper bound of O(1/

√
n) for subadditive

functions, and an upper bound of a constant for XOS functions. They also show that the
problem is NP-hard even for additive functions, and devise an FPTAS for this case.

Vuong et al. [24] study the model of [9] for the case where the function f is supermodular,
and show that no polynomial time algorithm can achieve any constant approximation nor an
additive FPTAS. They also present an additive PTAS for a special case of graph-based super
modular valuations.

Castiglioni et al. [6] study a multi-agent setting in which each agent has his own outcome,
which is observable by the principal, and the principal’s reward depends on all the individual
outcomes. When the principal’s reward is supermodular, they show that it is NP-hard to get
any constant approximation to the optimal contract. They also give a poly-time algorithm
for the optimal contract in special cases. When the principal’s reward is submodular, they
show that for any α ∈ (0, 1) it is NP-hard to get a nα−1-approximation, and they also provide
a poly-time algorithm that gives a (1− 1

e )-approximation up to a small additive loss.
Dasartha et al. [7] consider a multi-agent setting with graph-based reward functions,

and continuous effort levels, and characterize the optimal equilibrium induced by a linear
contract.

Multi-action settings: additional related work. Vuong et al. [24] and Dütting et al. [10]
further explore the multi-action model of [8]. They present a poly-time algorithm for
computing the optimal contract for any class of instances that admits an efficient algorithm
for the agent’s demand and poly-many “breakpoints” in the agent’s demand. A direct
corollary of this result is a polynomial time algorithm for computing the optimal contract
when the success probability function is supermodular and the cost function is submodular.
Dütting et al. [10] further show a class of XOS success probability functions (matching-based)
which admits an efficient algorithm for the agent’s demand, but has a super-polynomial
number of breakpoints in the agent’s demand. Computing the optimal contract for this class
remains an open problem. (Pseudo) polynomial algorithms are presented for two special
cases.

Additional combinatorial contract models. Beyond multi-agent and multi-action, one can
consider other dimensions in which a contracting problem grows. For example, Dütting
et al. [11] consider a setting with exponentially many outcomes. They show that under a
constant number of actions, it is NP-hard to compute an optimal contract. They proceed to
weaken their restriction on contracts, and consider “approximate-IC” contracts, in which
the principal suggests an action for the agent to take (in addition to the payment scheme),
and the agent takes it as long as its utility is not much lower than that of another possible
action. They present an FPTAS that computes an approximate-IC contract that gives the
principal an expected utility of at least that achieved in the optimal (IC) contract. For an
arbitrary number of actions, they show NP-hardness of any constant approximation, even for
approximate-IC contracts.

ITCS 2024
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Contracts for agents with types. Guruganesh et al. [15] consider a setting where in addition
to hidden action, the agent also has a private type, which changes the effect of each action
he takes on the project’s outcome. In the private type setting the principal may wish to
incentivize the agent with a menu of contracts, i.e., a set of contracts from which the agent is
free to choose whichever contract he prefers. They show APX-hardness of both the optimal
contract and the optimal menu of contracts. In contrast, Alon et al. [1] consider the case
where the agent has a single-dimensional private type, and they present a characterization of
implementable allocation rules (mappings of agent types to actions), which allows them to
design a poly-time algorithm for the optimal contract with a constant number of actions.

Castiglioni et al. [5] study the case where the agent’s private type is Bayesian, i.e.,
drawn from some known finitely-supported distribution. They study menus of randomized
contracts (defined as distributions over payment vectors), wherein upon the agent’s choice of
randomized contract, the principal draws a single deterministic contract from the distribution,
and the agent plays his best response to this deterministic contract. They show that an
almost optimal menu of randomized contracts can be computed in polynomial time. They
also show that the problem of computing an optimal menu of deterministic contracts cannot
be approximated within any constant factor in polynomial time, and that it does not admit
an additive FPTAS.

Optimizing the efforts of others. Contract design is part of an emerging frontier in
algorithmic game theory regarding optimizing the effort of others (see, e.g., the STOC 2022
TheoryFest workshop with the same title). In addition to contract design, this field includes
recent work on strategic classification [19, 3], delegation [18, 4], and scoring rules [23, 21].

2 Model and Preliminaries

We first describe the basic version of the contract design problem, also known as the hidden-
action or principal-agent setting. We then present two extensions, one with multiple agents,
the other with multiple actions. For simplicity, we restrict attention to a binary-outcome
setting, where a project either succeeds or fails.

2.1 Basic Principal-Agent Setting
A single principal interacts with a single agent, in an effort to make a project succeed. The
agent has a set A of possible actions, each with associated cost ci ≥ 0 and probability
pi ∈ [0, 1]. When the agent selects action i ∈ A, he incurs a cost of ci, and the project
succeeds with probability pi, and fails with probability 1− pi. If the project succeeds, the
principal gets a reward which we normalize to 1. The principal is not aware of which action
the agent has taken, only if the project has succeeded or failed.

Contracts. Since exerting effort is costly and reaps benefits only to the principal, in and by
itself the agent has no incentive to exert effort. This challenge is often referred to as “moral
hazard”. To incentivize the agent to exert effort, the principal specifies a contract that maps
project outcomes (in this case, “success” and “failure”) to payments made to the agent by the
principal. It is well known that in the binary-outcome case, it is without loss of generality
to assume that the payment for failure is 0. Thus, a contract can be fully described by a
parameter α ∈ [0, 1], which is the fraction of the principal’s reward that is paid to the agent
(in our case, where the reward is normalized to 1, α is essentially the payment for success).
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Under a contract α ∈ [0, 1], the agent’s utility from action i ∈ A is the expected payment
minus the cost, i.e.,

uA(α, i) = pi · α− ci.

The principal’s utility under a contract α and an agent’s action i is the expected reward
minus the expected payment, i.e.,

uP (α, i) = pi(1− α).

Given a contract α, the agent’s best response is an action that maximizes his utility, namely
iα ∈ arg maxi∈A uA(α, i). As standard in the literature, the agent breaks ties in favor of the
principal’s utility. The principal’s problem, our problem in this paper, is to find the contract
α that maximizes her utility, given that the agent best responds. Let uP (α) = uP (α, iα),
then the principal’s objective is to find α that maximizes uP (α).

2.2 Combinatorial Contract Settings
In what follows, we define two combinatorial settings, one with multiple agent (introduced
by [2], as presented in [9]), the other with multiple actions (introduced by [8]). In both
cases we use a set function f : 2A → [0, 1] that maps every subset of a set A to a success
probability. The set A denotes the set of agents in the first setting, and the set of actions in
the second setting. When considering f outside of a specific context, we refer to A as the set
of items.

We focus on success probability functions f that belong to one of the following classes of
complement-free set functions [22]. A set function f : 2A → R≥0 is:
1. Additive if there exist values v1, . . . , vn ∈ R≥0 such that ∀S ⊆ A. f(S) =

∑
i∈S vi.

2. Coverage if there is a set of elements U , with associated positive weights {wu}u∈U , and a
mapping h : A → 2U such that for every S ⊆ A, f(S) =

∑
u∈U wu · 1[∃i ∈ S. u ∈ h(i)],

where 1[B] is the indicator variable of the event B. In this paper, we focus on a special
case of coverage functions, called normalized unweighted coverage functions, in which
wu = 1

|U | for every u ∈ |U |. We represent a normalized unweighted coverage function f

using a tuple (U, A, h), for which f(S) = 1
|U |
∣∣⋃

i∈S h(i)
∣∣.

3. Submodular if for any two sets S, S′ ⊆ A s.t. S ⊆ S′ and i ∈ A it holds that f(i | S) ≥
f(i | S′), where f(i | S) = f(S ∪ {i})− f(S) is the marginal contribution of i to S.

4. XOS if there exists a finite collection of additive functions {ai : 2A → R≥0}k
i=1 such that

for every S ⊆ A, f(S) = maxi=1,...,k ai(S).

It is well known that additive ⊂ coverage ⊂ submodular ⊂ XOS, and all containment
relations are strict [20].

Computational model. Since the success probability function f : 2A → [0, 1] contains
exponentially many (in |A|) values, we assume, as is common in the literature, that the
algorithm has a value oracle access, which, for every set S ⊆ A, returns f(S). It should be
noted that most of our results hold under an even stronger assumption. Namely, that the
success probability function f admits a succinct representation, for which a value oracle can be
computed efficiently, and that this representation is given to the algorithm. This assumption
implies that these results are purely computational hardness ones, as the algorithm essentially
knows the entire function.

We next present the two combinatorial models considered in this paper.

ITCS 2024



44:8 On the (In)approximability of Combinatorial Contracts

Setting 1: Multiple agents. In the multiple agents setting, the principal interacts with
a set A of n agents. Every agent i ∈ A decides whether to exert effort or not (binary
action). Exerting effort comes with a cost of ci ≥ 0 (otherwise the cost is zero). The success
probability function f : 2A → [0, 1] maps every set of agents who exert effort to a success
probability of the project, where f(S) denotes the success probability if S is the set of agents
who exert effort.

A contract is now a vector α = (α1, . . . , αn) ∈ [0, 1]n, where αi is the payment to agent i

upon a project success.
Given a contract α = (α1, . . . , αn) and a set S of agents who exert effort, the principal’s

utility is given by
(
1−

∑
i∈A αi

)
f(S). Agent i’s utility is given by αif(S)− 1[i ∈ S]ci. Note

that agent i is paid in expectation αif(S) regardless of whether he exerts effort or not, but
pays ci only if he exerts effort (i.e., if i ∈ S).

To analyze contracts, we consider the (pure) Nash equilibria of the induced game among
the agents. A contract α = (α1, . . . , αn) is said to incentivize a set S ⊆ A of agents to exert
effort (in equilibrium) if

αif(S)− ci ≥ αif(S \ {i}) for all i ∈ S, and
αif(S) ≥ αif(S ∪ {i})− ci for all i /∈ S.

Since equilibria may not be unique, we think of a contract as a pair of α, S where S is a
set of agents incentivized to exert effort (in equilibrium).

It is easy to observe that for any set S ⊆ A, the best way for the principal to incentivize
the agents in S is by the contract

αi = ci

f(i | S \ {i}) for all i ∈ S, and

αi = 0 for all i /∈ S,

where f(i | S \ {i}) = f(S) − f(S \ {i}) is the marginal contribution to S of adding i to
S \{i}. We interpret ci

f(i|S\{i}) as 0 if ci = 0 and f(i | S \{i}) = 0 and as infinity when ci > 0
and f(i | S \ {i}) = 0. The principal thus tries to find a set S that maximizes g(S) where

g(S) =
(

1−
∑
i∈S

ci

f(i | S \ {i})

)
f(S).

Let S⋆ be the optimal set of agents, i.e., the set that maximizes g. We say that S is a
β-approximation to the optimal contract (where β ≤ 1) if g(S) ≥ β · g(S⋆).

Setting 2: Multiple actions. In the multiple actions setting, the principal interacts with
a single agent, who faces a set A of n actions, and can choose any subset S ⊆ A of them.
Every action i ∈ A is associated with a cost ci ≥ 0, and the cost of a set S of actions is∑

i∈S ci. The success probability function f(S) denotes the probability of a project success
when the agent chooses the set of actions S.

A contract is defined by a single parameter α ∈ (0, 1), which denotes the payment to the
agent upon the project’s success. Given a contract α, the agent’s and principal’s utilities
under a set of actions S are, respectively,

uA(α, S) = f(S) · α−
∑
i∈S

ci and uP (α, S) = f(S)(1− α).
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The agent’s best response for a contract α is Sα ∈ arg maxS⊆A uA(α, S). As before, the
agent breaks ties in favor of the principal’s utility. We also denote uP (α) = uP (α, Sα), and
the principal’s objective is to find a contract α that maximizes her utility uP (α). We denote
by α⋆ the optimal contract, i.e., the contract that maximizes uP (α⋆). We say that a contract
α is a β-approximation (where β ≤ 1) if uP (α) ≥ β · uP (α⋆).

3 An NP-hard Promise Problem of Coverage Functions

In this section we define a promise problem regarding normalized unweighted coverage
functions that is the basis of our hardness results for the contract models with submodular
success probability functions. Essentially, we show that it is NP-hard to distinguish between
a normalized unweighted coverage function f that has a relatively small set S with f(S) = 1,
and one for which a significantly larger set T would be required to get close to f(T ) = 1.
This naturally leads to our hardness results in Sections 4 and 6; by setting uniform costs
to all actions / agents, an approximately optimal contract can usually distinguish between
the case where a relatively small set achieves f(S) = 1 (and incentivizing costs less to the
principal) and a larger set is required to get close to f(T ) = 1 (and incentivizing costs more
to the principal).

This hardness result is an extension of a hardness result by Feige [13], which we present
next for completeness. Recall that a normalized unweighted coverage function f is given
by a tuple (U, A, h), where U is a set of elements, and h is a mapping from A to 2U (see
Section 2.2).

▶ Proposition 1 ([13]). For every 0 < ε < e−1, on input (k, f), where k ∈ N and f = (U, A, h)
is a normalized unweighted coverage function such that exactly one of the following two
conditions holds:
1. There exists a set S ⊆ A of size k such that f(S) = 1.
2. Every set S ⊆ A of size k satisfies f(S) ≤ 1− e−1 + ε.
It is NP-hard to determine which of the two conditions is satisfied by the input.

Remark: Feige [13] used a different terminology, but proved an equivalent result.
We next present the following extension to Proposition 1.

▶ Proposition 2. For every M > 1 and every 0 < ε < e−1, on input (k, f), where k ∈ N
and f = (U, A, h) is a normalized unweighted coverage function such that ∀i ∈ A. f({i}) = 1

k

and exactly one of the following two conditions holds:
1. There exists a set S ⊆ A of size k such that f(S) = 1.
2. Every set S ⊆ A of size βk such that β ≤M satisfies f(S) ≤ 1− e−β + ε.
It is NP-hard to determine which of the two conditions is satisfied by the input.

Proposition 1 asserts that it is hard to approximate the maximum value of f(S) for sets
of size k within some factor, and in Proposition 2 we generalize this to the maximum value
of f(S) over all sets S of some fixed size ℓ ∈ O(k). This is a necessary adjustment for our
contract design problem, as we are not restricted to sets of size exactly k. Indeed, we can
have either smaller or slightly larger sets (at smaller or slightly larger costs, respectively).

The proof of Proposition 2 can be found in the full version of this paper.
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4 Hardness of Approximation for Multi-Agent, Submodular f

In this section, we settle an open problem from [9]. In particular, [9] show that in a multi-
agent setting, one can get constant-factor approximation for settings with submodular success
probability function f , with value queries. It is left open whether one can get better than
constant approximation for this setting. The following theorem resolves this question in the
negative.

▶ Theorem 3. In the multi-agent model, for submodular (and even normalized unweighted
coverage) success probability function f , no polynomial time algorithm with value oracle
access can approximate the optimal contract within a factor of 0.7, unless P = NP .

Before presenting the proof of this theorem, we recall some of the details of the multi-agent
model (see Section 2). In this setting, the principal interacts with a set A of n agents. Every
agent i ∈ A decides whether to exert effort (at cost ci ≥ 0) or not. The success probability
function f : 2A → [0, 1] maps every set of agents who exert effort to a success probability of
the project. A contract is a vector α = (α1, . . . , αn) specifying the payment to each agent
upon success. The principal seeks to find the optimal set S of agents to exert effort, which is
equivalent to maximizing the function

g(S) =
(

1−
∑
i∈S

ci

f(i | S \ {i})

)
f(S).

Proof of Theorem 3. Our proof relies on Proposition 2, by creating a reduction with the
following properties: Given as input (k, f) where f : 2A → [0, 1] is a coverage function that
satisfies one of the conditions of Proposition 2, we construct an instance of the multi-agent
contract problem with the following separation: Under condition (1) in the proposition, the
principal’s utility is at least 0.5, whereas under condition (2), the principal’s utility is strictly
less than 0.35.

Suppose we have a 0.7-approximation algorithm for our contract problem, and let (α, S)
be the output (i.e., contract) of this algorithm on our reduction-generated instance. If the
principal’s utility under (α, S) is greater than or equal to 0.35 (note that computing the
principal’s utility is easy in this model), then we must be under condition (1) of Proposition 2.
Otherwise (if the principal’s utility is less than 0.35), then we must be under condition (2),
since for condition (1) to hold, we should get at least 0.7 · 0.5 = 0.35. Since the construction
of our reduction is polynomial, this proves the theorem.

It remains to construct an instance that admits the separation above.
Given k, f : 2A → [0, 1] from Proposition 2 with M = 2, ε = 0.01, we construct an

instance of the multi-agent contract problem, where A is the set of agents, f is the success
probability function, and ci = 1

2k2 for every agent i ∈ A. We next establish the desired
separation.

Case 1: f satisfies condition (1) from Proposition 2. Take set S per condition (1) of
Proposition 2 (i.e., |S| = k and f(S) = 1). We claim that for any i ∈ S, f(i | S \ {i}) = 1

k .
Indeed,

f(i | S \ {i}) = f(S)− f(S \ {i}) ≥ 1− (k − 1) 1
k

= 1
k

,
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where the inequality follows by f(S) = 1 and submodularity of f . In the other direction we
have f(i | S \ {i}) ≤ f({i}) = 1

k , giving f(i | S \ {i}) = 1
k . We now have

g(S) =
(

1−
∑
i∈S

ci

f(i | S \ {i})

)
f(S) =

(
1−

∑
i∈S

k · ci

)
f(S) =

(
1− |S|2k

)
· 1 = 1

2 .

We get that the principal’s utility under the optimal contract is at least 0.5, as desired. 1

Case 2: f satisfies condition (2) from Proposition 2. Let S ⊆ A be an arbitrary set. We
show that g(S) < 0.35.

If |S| ≥ 2k, we have

g(S) =
(

1−
∑
i∈S

ci

f(i | S \ {i})

)
f(S) ≤

(
1−

∑
i∈S

ci

f({i})

)
f(S) =

(
1− |S|2k

)
f(S) ≤ 0,

where the first inequality is by submodularity of f , and the last inequality is by |S| ≥ 2k.
If |S| < 2k = Mk, we can apply condition (2) and get

g(S) ≤
(

1−
∑
i∈S

ci

f({i})

)
f(S) ≤

(
1− |S|2k

)(
1− e− |S|

k + 0.01
)

< 0.35,

where the third inequality is since (1− x
2 )(1− e−x + 0.01) < 0.35 for all x. This concludes

the proof. ◀

In the full version of this paper, we discuss the differences in our approach for hardness
results, and the approach of [9], and explain why the hardness results in Dütting et al. [9]
cannot be extended to show hardness of getting a PTAS for submodular success probability
functions.

5 Hardness of Approximation for Multi-Agent, XOS f

In this section, we show that, in the multi-agent model, one cannot approximate the optimal
contract under XOS success probability functions within a constant factor, with access to a
value oracle. More formally, we prove the following theorem:

▶ Theorem 4. In the multi-agent model, with XOS success probability functions, no (ran-
domized) algorithm that makes poly-many value queries can approximate the optimal contract
(with high probability) to within a factor greater than 4n−1/6.

To prove this theorem, we define a probability distribution over XOS success probability
functions and show an upper bound on the expected performance of any deterministic
algorithm. By Yao’s principle, this gives us an upper bound on the worst-case performance
of a randomized algorithm, thus proving the theorem.

We note that unlike our other results, which are computational hardness results, this
result is information theoretical, as we rely on the algorithm “not knowing” something about
the success probability function.

1 We note that in this case, incentivizing S is the optimal contract, since to incentivize each agent the
principal needs to pay at least 1

2k , and since the success probability function satisfies, for any T ⊆ A,
f(T ) ≤ |T |

k , we get that g(T ) ≤ (1 − |T |
2k ) |T |

k ≤ 1
2 .
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Proof. For any n, we uniformly at random sample a subset G ⊆ A = [n] of the agents of
size |G| = m = n1/3, and build the following instance:
1. Our success probability function is fG : 2A → [0, 1], and for any non-empty set S ⊆ A:

fG(S) = 1
n

max
(
|S ∩G|,

√
m,
|S|√

m

)
.

2. For any i ∈ A the cost associated with agent i is ci = 1
2m·n .

Note that fG is clearly XOS, as it is the maximum of three XOS functions (two of them are
additive and one of them is unit demand), and the family of XOS is closed under maximum
(in contrast to submodular).

We start by noting that

g(G) =
(

1−
∑
i∈G

ci

fG(i | G \ {i})

)
fG(G) =

(
1−m · n

2m · n

)
· m

n
= m

2n
.

We call a value query on set S successful if |S| ≤ m1.5 and |S∩G| >
√

m, and unsuccessful
otherwise.

We start by noting that the probability of any specific value query being successful is
negligible:

▶ Lemma 5. Let S ⊆ A. For n ≥ 512, it holds that

PrG[S is successful] ≤ e−
√

m
4 .

Proof. The probability of S being successful when G is chosen uniformly at random from all
subsets of A of size m is

Pr
G

[|S ∩G| >
√

m ∧ |S| ≤ m1.5]

which is monotone in the size of S up to size m1.5. For |S| = m1.5, |S ∩G| is distributed as
a hyper-geometric random variable HG(n, m1.5, m). Therefore

PrG[S is successful] ≤ PrX∼HG(n,m1.5,m)[X >
√

m] ≤ Pr
X∼Bin(m, m1.5

n−m )[X >
√

m]

≤ Pr
X∼Bin(m, 2m1.5

n )[X >
√

m],

where the second inequality is because the probability of success in each one of the m draws
(without replacement) in the hyper-geometric distribution HG(n, m1.5, m) is always at most
m1.5

n−m , and the last inequality is because for n ≥ 512 it holds that m1.5

n−m ≤
2m1.5

n .
When denoting µ = E

X∼Bin(m, 2m1.5
n )[X] = 2m2.5

n = 2√
m

and δ =
√

m
2µ = m

4 we can apply
the Chernoff bound and get

Pr
X∼Bin(m, 2m1.5

n )
[X >

√
m] ≤ Pr

X∼Bin(m, 2m1.5
n )

[X ≥ (1 + δ)µ]

≤ e
−δ2µ
2+δ ≤ e

−δ2µ
2δ = e− m1.5/8

m/2 = e−
√

m
4 . ◀

We now note that any set S ⊆ A that is an unsuccessful value query is also a poor
approximation of the optimal contract:

▶ Lemma 6. Let S ⊆ A. For n ≥ 64, if a value query on S is unsuccessful, then g(S) ≤ 4g(G)√
m

.
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Proof. We start by noting that for any S ⊆ A and i ∈ S, it holds that fG(i | S \ {i}) ≤ 1
n ,

which implies ci

fG(i|S\{i}) = 1/(2mn)
fG(i|S\{i}) ≥

1
2m .

Now, if |S| ≥ 2m, then g(S) =
(

1−
∑

i∈S
ci

fG(i|S\{i})

)
f(S) ≤

(
1− |S| · 1

2m

)
f(S) ≤ 0, as

needed.
Otherwise, since n ≥ 64, we have |S| < 2m ≤ m

3
2 , and by our definition of an unsuccessful

value query, it holds that |S ∩ G| ≤
√

m, meaning g(S) ≤ fG(S) ≤ 2
√

m
n = 4g(G)√

m
, as

needed. ◀

From Lemma 6, if we assume without loss of generality that an algorithm value queries
the set S which it returns as a contract, we can say that an algorithm with no successful
value queries achieves at most a 4√

m
-approximation. We therefore conclude the proof by

showing that the probability of any algorithm that makes a polynomial number of value
queries having a successful query is negligible.

▶ Lemma 7. For n ≥ 512, if a determinstic algorithm makes at most k value queries, the
probability of at least one query being successful is at most k · e−

√
m
4 .

Proof. For any m such that k · e−
√

m
4 ≥ 1 we are done. Otherwise, for m such that

k · e−
√

m
4 < 1, let ALG be a deterministic algorithm that makes at most k value queries. Our

first step is to show that adaptivity doesn’t help ALG, which allows us to apply union bound.
More precisely, we show the existence of non-adaptive queries S1, . . . , Sℓ such that ℓ ≤ k and

Pr
G

[ALG makes a successful query] ≤ Pr
G

[one of S1, . . . , Sℓ is a successful query].

Let Si be the i-th query that ALG asks after the answers to all previous queries Sj were
1
n max

(√
m,

|Sj |√
m

)
for all j < i, and let ℓ ≤ k be the index of the last query asked in this

scenario2. To see that

Pr
G

[ALG makes a successful query] ≤ Pr
G

[one of S1, . . . , Sℓ is a successful query],

let T1, . . . , Tℓ′ be the (perhaps adaptive) queries ALG actually makes. We will show that
if at least one of those is successful, then at least one of S1, . . . , Sℓ is successful. Assume
that one of T1, . . . , Tℓ′ is successful, and let i be the lowest index such that Ti is successful.
If i = 1, note that since ALG is deterministic, then S1 = T1, as needed. Otherwise, by
definition of i, for any j < i, Tj is an unsuccessful query, then the answer of ALG to value
query Tj is 1

n max
(√

m,
|Tj |√

m

)
, which by induction gives us for any j ≤ i, Tj = Sj , meaning

Si is a successful query, as needed.
Now, by the union bound and Lemma 5 we have

PrG[ALG makes a successful query] ≤ PrG[one of S1, . . . , Sℓ is a successful query]

≤ k · e−
√

m
4 . ◀

Note that for any k that is polynomial in n it holds that k · e−
√

m
4 = k · e− n1/6

4 is negligible,
which concludes the proof. ◀

2 Since k · e−
√

m

4 < 1, the sequence of sets S1, . . . , Sℓ is well defined since by union bound and Lemma 5
there is a positive probability that all of S1, . . . , Sℓ are unsuccessful, in which case the answer to query
Sj is indeed 1

n max
(√

m,
|Sj |√

m

)
.
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6 Hardness of Approximation for Multi-Action, Submodular f

In this section, we use Proposition 2 to strengthen a hardness result of [8], showing that the
optimal contract for multi-action settings with submodular f is not only hard to compute
exactly, but also to approximate within any constant.

Before presenting our result, we recall the multi-action model from Section 2. The
principal interacts with a single agent, who faces a set A of n actions, and can choose
any subset S ⊆ A of them. Every action i ∈ A is associated with a cost ci ≥ 0, and the
cost of a set S of actions is

∑
i∈S ci. The success probability function f(S) denotes the

probability of a project’s success when the agent chooses the set of actions S. A contract is
defined by a single parameter α ∈ [0, 1], which denotes the payment to the agent upon the
project’s success. The principal’s objective is to find a contract α that maximizes her utility
uP (α) = (1− α)f(Sα), where Sα ∈ arg maxS⊆A uA(α, S) = arg maxS⊆A f(S) · α−

∑
i∈S ci

is the agent’s best response to a contract α, with tie-breaking in favor of the principal.
We are now ready to present the theorem.

▶ Theorem 8. In the multi-action model, for submodular (and even normalized unweighted
coverage) success probability function f , no polynomial time algorithm with value oracle
access can approximate the optimal contract within any constant factor, unless P = NP .

Proof. Let β ∈
(
0, 1

12
)
, we prove that no poly-time 12β-approximation algorithm exists, by

reducing from the hardness presented in Proposition 2.
Let (k, f ′ = (U ′, A′, h′)) be the input to our reduction per Proposition 2 with M = 2, ε =

β4. We build the following contract instance:
The set of actions is A = A′ ∪ {0}.
The success probability function is f(S) = 1

2 (f ′(S ∩A′) + 1[0 ∈ S]).
The costs are ci = 1−β2

2k for all i ∈ A′ and c0 = 1
2 (1− β3).

▶ Lemma 9. The success probability function defined above is a normalized unweighted
coverage function.

Proof. Let U = U ′ × {0, 1}, and define

h(i) =
{

h′(i)× {0} i ∈ A′

U ′ × {1} i = 0

The normalized unweighted coverage function defined by (U, A, h) is equal to f . ◀

▶ Lemma 10. In the contract problem instance defined above, the following holds:
1. If (k, f ′) satisfies condition 1 of Proposition 2, any α0 which is a 12β-approximation of

the optimal contract satisfies α0 < 1− β3.
2. If (k, f ′) satisfies condition 2 of Proposition 2, any α0 which is a 12β-approximation of

the optimal contract satisfies α0 ≥ 1− β3.
Note that by proving Lemma 10 we conclude the proof of Theorem 8.

Proof of Lemma 10. We first observe that the agent’s best response to a contract α < 1−β2

is to take no actions. This holds since for any i ∈ A′ it holds that

αf({i})− ci = α · 1
2f ′({i})− ci = α · 1

2k
− 1− β2

2k
< 0,
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where the second equality is since Proposition 2 guarantees f ′({i}) = 1
k for any i ∈ A′. It

also holds that for i = 0 we have

αf({i})− ci = α · 1
2 −

1
2(1− β3) < 0.

This means the agent’s utility from any non-empty set S ⊆ A is strictly less than 0, since

uA(α, S) = αf(S)−
∑
i∈S

ci ≤ α
∑
i∈S

f({i})−
∑
i∈S

ci =
∑
i∈S

αf({i})− ci < 0,

where the first inequality follows by subadditivity.
Note that the same arguments show that, given the contract α = 1− β2, the agent has

non-positive utility from any non-empty set S ⊆ A.

Case 1: (k, f ′) satisfies the first condition of Proposition 2. Let S ⊆ A′ be a set that
satisfies the condition (i.e. |S| = k and f ′(S) = 1). Under the contract α = 1 − β2, the
agent’s utility from the set S is

uA(α, S) = αf(S)−
∑
i∈S

ci = (1− β2)1
2 − |S|

1− β2

2k
= 0.

Since, as we noted earlier, no set has a greater utility to the agent, and ties are broken in favor
of the principal, this implies that the agent’s best response Sα satisfies f(Sα) ≥ f(S) ≥ 1

2 .
It follows that the principal’s utility from the contract α = 1− β2 satisfies

uP (α) = f(Sα)(1− α) ≥ 1
2β2.

Now, let α0 be some 12β-approximation of the optimal contract. This implies that

uP (α0) ≥ 12β · uP (1− β2) ≥ 12β · 1
2β2 > β3.

On the other hand, trivially it holds that uP (α0) ≤ 1− α0, which gives us α0 < 1− β3, as
needed.

Case 2: (k, f ′) satisfies the second condition of Proposition 3.2. We start by arguing
that the principal’s utility from the contract α = 1 − β3 is at least 1

2 β3. First, we show
that the agent’s best response Sα will always include the action 0. Indeed, if we assume by
contradiction that 0 /∈ Sα, by adding 0 to Sα we do not change the agent’s utility:

uA(Sα ∪ {0})− uA(Sα) = αf(0 | Sα)− c0 = (1− β3) · 1
2 −

1
2(1− β3) = 0.

This means that Sα ∪ {0} has the same utility to the agent, but a greater utility to the
principal, contradicting tie-breaking in favor of the principal. This implies that

uP (α) = f(Sα)(1− α) ≥ 1
2(1− α) = 1

2β3.

Now, let α < 1 − β3 be some contract, we show that uP (α) < 6β4 ≤ 12β · uP (1 − β3),
completing the proof of Lemma 10. If α < 1−β2, as argued before, the agent’s best response
is the empty set, which means the principal’s utility is 0 and we are done. Otherwise, if
1 − β2 ≤ α < 1 − β3, since Sα is the agent’s best response, it is clear that 0 /∈ Sα (since

ITCS 2024



44:16 On the (In)approximability of Combinatorial Contracts

otherwise Sα \ {0} has a strictly better utility to the agent). From this we conclude that
f(Sα) = 1

2 f ′(Sα) ≤ 1
2 . Since Sα must have a non-negative utility to the agent, it also holds

that

|Sα|
1− β2

2k
=
∑
i∈Sα

ci ≤ αf(Sα) ≤ f(Sα). (1)

Since f(Sα) ≤ 1
2 , Inequality 1 implies that |Sα| ≤ k

1−β2 ≤ M · k. This allows us to use
condition (2) of Proposition 2, which implies that f(Sα) ≤ 1

2 (1 − e−|Sα|/k + ε). Denoting
x = |Sα|

k , and plugging this into Inequality 1, we get the inequality

x
1− β2

2 ≤ 1
2(1− e−x + ε) ≤ 1

2

(
x− 1

4x2 + ε

)
,

where the last inequality is since e−x ≥ 1− x + 1
4 x2 for any x ∈ [0, 2]. By rearranging, we

get that

1
4x2 − β2x− ε ≤ 0,

implying

x ≤ β2 +
√

β4 + ε

1/2 ≤ β2 +
√

2β2

1/2 < 6β2

This means the principal’s utility is at most

uP (α) = f(Sα)(1− α) = 1
2f ′(Sα)(1− α) ≤ |Sα| ·

1
2k

(1− α) < 6β2(1− α) < 6β4,

as needed. ◀

This concludes the proof of Theorem 8. ◀

7 Hardness of Approximation for Multi-Action, XOS f

In this section, we show a hardness of approximation result for the multi-action model with
XOS success probability functions. More formally, we prove the following theorem:

▶ Theorem 11. In the multi-action model, for XOS f , for any ε > 0, no polynomial time
algorithm with value query access can approximate the optimal contract to within a factor of
n− 1

2 +ε, unless P=NP.

Our proof of Theorem 11 relies on the hardness of approximating ω(G), which is the size
of the largest clique in the graph G. This hardness result was presented by [16, 25], who
prove the following theorem:

▶ Theorem 12 ([16, 25]). For all ε > 0, it is NP-hard to approximate ω(G) to within n−1+ε.

Our technique is to use any β-approximation algorithm of the optimal contract to
distinguish between the cases ω(G) ≤ δ and ω(G) ≥ 2δ

β2 , for any δ > 0. Solving this promise
problem allows us to get a guarantee of either ω(G) > δ or ω(G) < 2δ

β2 . By iterating over
δi = 2i, we can get some i for which we are guaranteed ω(G) > δi and ω(G) < 2δi+1

β2 . This
allows us to approximate ω(G) within a factor of β2

4 (see formal arguments in Lemma 17),
which implies Theorem 11 from [16, 25].
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In Section 7.1 we show how to use a β-approximation algorithm for the contract problem
to distinguish between the two cases ω(G) ≤ δ and ω(G) ≥ 2δ

β2 in polynomial time for any
δ > 0, and in Section 7.2 we formally prove that this distinction gives us the ability to
approximate ω(G) to within a factor of β2

4 in polynomial time, thus concluding the proof of
Theorem 11.

7.1 Distinguishing Between ω(G) ≤ δ and ω(G) ≥ 2δ
β2

In this section, we prove the following lemma:

▶ Lemma 13. Algorithm 1 runs in polynomial time, given oracle access to a β-approximation
of the optimal contract for XOS functions. Additionally, on input (G, δ) composed of a graph
G and a positive integer δ it holds that:
1. If ω(G) ≤ δ, then Algorithm 1 returns SMALL.
2. If ω(G) ≥ 2δ

β2 , then Algorithm 1 returns LARGE.
3. If δ < ω(G) < 2δ

β2 , then Algorithm 1 returns either SMALL or LARGE.

We note that in Algorithm 1 we build a contract problem instance with a success
probability function that attains values greater than 1. This is done for simplicity, and
the result clearly holds for success probability functions that attain values within [0, 1], by
normalizing both f and the costs ci by f(V ′) (the maximum value of f).

Algorithm 1 Distinguishing Between ω(G) ≤ δ and ω(G) ≥ 2δ
β2 .

1: Given a graph G = (V, E) and δ ∈ N+, build the graph G′ = (V ′, E′) such that

V ′ = V ∪ [δ]
E′ = E ∪ {{i, j} | i, j ∈ [δ] ∧ i ̸= j}

2: Denote ε = 2
β − 1, M = |V ′|+ ε

3: Get α0 which is a β-approximation to the optimal contract in the instance (V ′, f : 2V ′ →
R≥0, {ci = M}i∈V ′) where

f(S) = (M + 1[S is a clique in G′]) · |S|+ min(|S|, δ) · ε

4: If α0 < M
M+1 , return SMALL, otherwise return LARGE.

First, we note the following lemma, which proves our oracle call in step 2 is valid:

▶ Lemma 14. The function f as defined in step 3 of Algorithm 1 is monotone, XOS, and
value queries can be computed in polynomial time.

Proof. For any non-empty subset T ⊆ V ′, we define the additive function fT : V ′ → R≥0
according to the weights

aT
i =

{
M + 1[T is a clique] + ε · min(|T |,δ)

|T | i ∈ T

0 else,

where fT (S) =
∑

i∈S aT
i .

Let S ⊆ V ′, we claim that

f(S) = max
T ∈2V ′ \{∅}

fT (S),
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which proves both XOS and monotonicity since all weights aT
i are non-negative. First, by

taking T = S, it is clear that

max
T ∈2V ′ \{∅}

fT (S) ≥ fS(S) = f(S).

Let T ⊆ V ′. We will show that fT (S) ≤ f(S), thus concluding the proof.
If S ⊆ T , it is clear that for any i ∈ S we have aT

i ≤ aS
i which implies fT (S) ≤ fS(S) =

f(S).
Otherwise, if S ̸⊆ T , it is clear that |S ∩ T | < |S|, which gives us

fT (S) =
∑
i∈S

aT
i ≤ |S ∩ T |

(
M + 1 + ε

min(|T |, δ)
|T |

)
≤ |S ∩ T |(M + 1) + ε min(|S|, δ)

< (|S ∩ T |+ 1)M + ε min(|S|, δ) ≤ |S| ·M + ε min(|S|, δ) ≤ f(S),

where the strict inequality is since M > |S ∩ T |.
A value oracle of f can be computed efficiently by checking, for a given set S, whether it

is a clique or not. ◀

Next, we prove the correctness of Algorithm 1. We start by characterizing the agent’s
best response.

▶ Lemma 15. On any input (G, δ), when considering the contract problem instance defined
in line 3 of Algorithm 1:
1. The agent’s best response to a contract 0 < α < M

M+1+ε is ∅.
2. The agent’s best response to a contract M

M+1+ε ≤ α < M
M+1 is a clique of size δ.

3. The agent’s best response to a contract M
M+1 ≤ α < 1 is a maximum size clique.

Proof. Let α ∈ (0, 1).

If α < M
M+1+ε

. The agent’s utility from a set S ⊆ V ′ is

uA(α, S) = f(S) · α− |S| ·M ≤ (M + 1 + ε)|S| · α− |S| ·M,

which is strictly negative unless |S| = 0.

If M
M+1+ε

≤ α < M
M+1 . Let T be a clique of size δ in G′ (such a clique exists since we

can simply take the δ vertices we added to G). The agent’s utility from T is

uA(α, T ) = f(T ) · α− |T | ·M = (M + 1 + ε) · δ · α− δ ·M = δ ((M + 1 + ε) · α−M) .

First, we note that any set S with |S| > δ is strictly worse than T :

uA(α, S)− uA(α, T ) ≤ (|S|(M + 1) + εδ) · α−M |S| − δ ((M + 1 + ε) · α−M)
= (|S| − δ) ((M + 1)α−M) < 0.

Additionally, any S such that |S| ≤ δ is not better than T :

uA(α, S) ≤ |S| ((M + 1 + ε) · α−M) ≤ uA(α, T ).

These two facts, together with the fact that out of the sets with |S| ≤ δ, T maximizes f(T )
and the agent breaks ties in favor of the principal, give us that the agent’s best response is T

(or another clique of size δ).
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If M
M+1 ≤ α < 1. Let T be a maximum size clique. The agent’s utility from T is

uA(α, T ) = f(T ) · α− |T | ·M = α((M + 1)|T |+ εδ)− |T | ·M ≥ α · ε · δ.

Again, we note that any set S with |S| > |T | is strictly worse than T . Since S cannot be a
clique, we get that:

uA(α, S) = α(M |S|+ εδ)− |S| ·M < α · ε · δ

Likewise, any set S with |S| ≤ |T | isn’t better than T :

uA(α, S) ≤ (|S|(M + 1) + εδ) · α− |S| ·M = ε · δ · α + |S|((M + 1) · α−M)
≤ ε · δ · α + |T |((M + 1) · α−M) = uA(α, T ).

Again, since T maximizes f(T ) (among all sets of size at most |T |) and the agent breaks ties
in favor of the principal, the the agent’s best response is T (or another clique of maximum
size). ◀

A direct corollary of Lemma 15 is the following lemma, which is a full characterization of
the principal’s utility from any contract:

▶ Corollary 16. On any input (G, δ), when considering the contract problem instance defined
in line 3 of Algorithm 1:
1. The principal’s utility from a contract 0 < α < M

M+1+ε is

uP (α) = 0.

2. The principal’s utility from a contract M
M+1+ε ≤ α < M

M+1 is

uP (α) = ((M + 1) · δ + min(δ, δ) · ε) · (1− α) = (M + 1 + ε)δ(1− α).

3. The principal’s utility from a contract M
M+1 ≤ α < 1 is

uP (α) = ((M + 1)ω(G′) + δε) (1− α).

We are now ready to prove Lemma 13

Proof of Lemma 13. Let (G, δ) be the input of Algorithm 1. To prove Lemma 13 it suffices
to prove that if w(G) ≤ δ, Algorithm 1 returns SMALL and if w(G) ≥ 2δ

β2 , it returns LARGE.

If w(G) ≤ δ. In this case, ω(G′) = δ. Assume towards contradiction that Algorithm 1
returns LARGE, i.e., α0 ≥ M

M+1 . Since α0 is a β-approximation, we have

uP (α0) ≥ β · uP

(
M

M + 1 + ε

)
.

Corollary 16 gives us

uP

(
M

M + 1

)
≥ uP (α0).

Putting the two inequalities together, and substituting them with the expressions for the
principal’s utility from Corollary 16 gives us

((M + 1)ω(G′) + δε)
(

1− M

M + 1

)
≥ β · (M + 1 + ε)δ

(
1− M

M + 1 + ε

)
. (2)
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Note that since ε = 2
β − 1, then(

1− M

M + 1 + ε

)
= 1 + ε

M + 1 + ε
= 2

β
· 1

M + 1 + ε
>

2
β
· 1

2(M + 1) = 1
β
·
(

1− M

M + 1

)
,

where the inequality is since M ≥ ε. Plugging this into Inequality 2 and dividing both sides
by
(

1− M
M+1

)
gives us

(M + 1)ω(G′) + δε > (M + 1 + ε)δ.

This gives us ω(G′) > δ, contradiction.

If w(G) ≥ 2δ
β2 . In this case, ω(G′) ≥ 2δ

β2 . Assume by contradiction that Algorithm 1
returns SMALL, i.e., α0 < M

M+1 . Since α0 is a β-approximation, we have

uP (α0) ≥ β · uP

(
M

M + 1

)
.

Corollary 16 gives us

uP

(
M

M + 1 + ε

)
≥ uP (α0).

Putting the two inequalities together, and substituting them with the expressions for the
principal’s utility from Corollary 16 gives us

(M + 1 + ε)δ
(

1− M

M + 1 + ε

)
≥ β · ((M + 1)ω(G′) + δε)

(
1− M

M + 1

)
. (3)

Note that since ε = 2
β − 1, then(

1− M

M + 1 + ε

)
= 1 + ε

M + 1 + ε
= 2

β
· 1

M + 1 + ε
<

2
β
· 1

M + 1 .

Plugging this into the LHS of Inequality 3 and dividing both sides by 2
β ·
(

1− M
M+1

)
gives us

(M + 1 + ε)δ >
β2

2 · ((M + 1)ω(G′) + δε) ≥ β2

2 · (M + 1 + ε)ω(G′)

where the second inequality is from ω(G′) ≥ δ. This gives us ω(G′) < 2δ
β2 , contradiction. ◀

7.2 Using the Differentiation to Approximate ω(G)

In this section we show how to use the guarantees given by Section 7.1 to get a β2/4-
approximation algorithm for ω(G), given an oracle access to a β-approximation of the
optimal contract, thus concluding the proof of Theorem 11.

▶ Lemma 17. Algorithm 2, given oracle access to a β-approximation of the optimal con-
tract for XOS functions, runs in polynomial time, and on input G = (V, E) gives a β2

4 -
approximation of ω(G).
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Algorithm 2 Approximation ω(G).

1: Given a graph G = (V, E)
2: for i← 0 to ⌊log2(|V |)⌋ do
3: Run Algorithm 1 on (G, δ = 2i), and denote its answer by a(i).
4: end for
5: if a(0) = SMALL then
6: return 1.
7: else
8: return 2imax where imax is the maximal i such that a(i) = LARGE.
9: end if

Proof of Lemma 17. If Algorithm 2 returns 1 on line 6, then from Lemma 13, we know that
ω(G) ≤ 2

β2 , meaning the algorithm’s output is a β2

2 -approximation, as needed.
Otherwise, let imax be the maximal i such that a(i) = LARGE. By Lemma 13 we know

that ω(G) ≥ 2imax .
If imax = ⌊log2(|V |)⌋, returning 2imax ≥ |V |

2 gives us a 1
2 -approximation (since trivially

ω(G) ≤ |V |), as needed.
Finally, if imax < ⌊log2(|V |)⌋, by our choice of imax we know that a(imax + 1) = SMALL,

meaning from Lemma 13 that ω(G) ≤ 2·2i+1

β2 , which means returning 2i gives us a β2

4 -
approximation, as needed. ◀
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